RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

Related tags

Deep LearningRL-GAN
Overview

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN is an official implementation of the paper: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation.

Paper

Shani Gamrian, Yoav Goldberg, "Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation"

@article{DBLP:journals/corr/abs-1806-07377,
  author    = {Shani Gamrian and
               Yoav Goldberg},
  title     = {Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image
               Translation},
  journal   = {CoRR},
  volume    = {abs/1806.07377},
  year      = {2018},
  url       = {http://arxiv.org/abs/1806.07377},
  archivePrefix = {arXiv},
  eprint    = {1806.07377},
  timestamp = {Mon, 13 Aug 2018 16:48:23 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1806-07377},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Videos:

Breakout

RoadFighter

Installation

  • The code was tested on Ubuntu 16.04 with Python 3.6
  • Install packages by typing the command: pip install -r requirements.txt.
  • For Road Fighter, clone and install the repo: https://github.com/ShaniGam/retro

Getting Started

Breakout Examples

  • Train Breakout from scratch:
python -m breakout_a3c.main --num-processes 32 --variation 'standart'
  • Transfer from standart to diagonals variation and fine-tune the model:
python -m breakout_a3c.main --num-processes 32 --variation diagonals --ft-setting full-ft --test
  • Collect images for UNIT training:
python -m breakout_a3c.main --collect-images --num-collected-imgs 100000 --variation diagonals --num-processes 1
  • Train UNIT:
python -m unit.train --trainer UNIT --config unit/configs/breakout-diagonals.yaml
  • Run Breakout with UNIT:
python -m breakout_a3c.main --variation diagonals --test --ft-setting full-ft --test-gan --gan-dir breakout-diagonals --num-processes 0

Road Fighter Examples

  • Train level 1 of Road Fighter
python -m roadfighter_a2c.main --num-processes 84
  • Collect images for UNIT training:
python -m roadfighter_a2c.main -level 1 --collect-images --num-collected-imgs 100000 --num-processes 1
python -m roadfighter_a2c.main -level 2 --collect-images --num-collected-imgs 100000 --num-processes 1
  • Train UNIT:
python -m unit.train --trainer UNIT --config unit/configs/roadfighter-lvl2.yaml
  • Run Road Fighter with UNIT:
python -m roadfighter_a2c.main --load --level 2 --test-gan --gan-dir roadfighter-lvl2-kl01 --num-processes 1
  • Run Road Fighter with UNIT and Imitation Learning:
python -m roadfighter_a2c.main_imitation --load --gan-dir roadfighter-lvl2-kl01 --gan-imitation-file '00320000' --log-name lvl2.log --super-during-rl --level 2 --det-score 5350

Acknowledgments

The code was written by Shani Gamrian and is based on the repositories: pytorch-a3c, pytorch-a2c, UNIT

TO-DO

  • Add links for pretrained models.
  • Create videos.
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN ๐Ÿฆ„ Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
YOLOv5 ๐Ÿš€ is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 ๐Ÿš€ is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

้˜ฟๆ‰ 73 Dec 16, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Juliรกn Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022