Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Overview

Few-Shot-Intent-Detection

Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It includes popular challenging intent detection datasets and baselines. For more details of the new released OOS datasets, please check our paper.

Intent detection datasets

We process data based on previous published resources, all the data are in the same format as DNNC.

Dataset Description #Train #Valid #Test Processed Data Link
BANKING77 one banking domain with 77 intents 8622 1540 3080 Link
CLINC150 10 domains and 150 intents 15000 3000 4500 Link
HWU64 personal assistant with 64 intents and several domains 8954 1076 1076 Link
SNIPS snips voice platform with 7 intents 13084 700 700 Link
ATIS airline travel information system 4478 500 893 Link

Intent detection datasets with OOS queries

What is OOS queires:

OOD-OOS: i.e., out-of-domain OOS. General out-of-scope queries which are not supported by the dialog systems, also called out-of-domain OOS. For instance, requesting an online NBA/TV show service in a banking system.

ID-OOS: i.e., in-domain OOS. Out-of-scope queries which are more related to the in-scope intents, which makes the intent detection task more challenging. For instance, requesting a banking service that is not supported by the banking system.

Dataset Description #Train #Valid #Test #OOD-OOS-Train #OOD-OOS-Valid #OOD-OOS-Test #ID-OOS-Train #ID-OOS-Valid #ID-OOS-Test Processed Data Link
CLINC150 A dataset with general OOS-OOS queries 15000 3000 4500 100 100 1000 - - - Link
CLINC-Single-Domain-OOS Two domains with both general OOS-OOS queries and ID-OOS queries 500 500 500 - 200 1000 - 400 350 Link
BANKING77-OOS One banking domain with both general OOS-OOS queries and ID-OOS queries 5905 1506 2000 - 200 1000 2062 530 1080 Link

Data structure:

Datasets/
├── BANKING77
│   ├── train
│   ├── train_10
│   ├── train_5
│   ├── valid
│   └── test
├── CLINC150
│   ├── train
│   ├── train_10
│   ├── train_5
│   ├── valid
│   ├── test
│   ├── oos
│       ├──train
│       ├──valid
│       └──test
├── HWU64
│   ├── train
│   ├── train_10
│   ├── train_5
│   ├── valid
│   └── test
├── SNIPS
│   ├── train
│   ├── valid
│   └── test
├── ATIS
│   ├── train
│   ├── valid
│   └── test
├── BANKING77-OOS
│   ├── train
│   ├── valid
│   ├── test
│   ├── id-oos
│   │   ├──train
│   │   ├──valid
│   │   └──test
│   ├── ood-oos
│       ├──valid
│       └──test
├── CLINC-Single-Domain-OOS
│   ├── banking
│   │   ├── train
│   │   ├── valid
│   │   ├── test
│   │   ├── id-oos
│   │   │   ├──valid
│   │   │   └──test
│   │   ├── ood-oos
│   │       ├──valid
│   │       └──test
│   ├── credit_cards
│   │   ├── train
│   │   ├── valid
│   │   ├── test
│   │   ├── id-oos
│   │   │   ├──valid
│   │   │   └──test
│   │   ├── ood-oos
│   │       ├──valid
└── └──     └──test

Briefly describe the BANKING77-OOS dataset.

  • A dataset with a single banking domain, includes both general Out-of-Scope (OOD-OOS) queries and In-Domain but Out-of-Scope (ID-OOS) queries, where ID-OOS queries are semantically similar intents/queries with in-scope intents. BANKING77 originally includes 77 intents. BANKING77-OOS includes 50 in-scope intents in this dataset, and the ID-OOS queries are built up based on 27 held-out semantically similar in-scope intents.

Briefly describe the CLINC-Single-Domain-OOS dataset.

  • A dataset with two separate domains, i.e., the "Banking'' domain and the "Credit cards'' domain with both general Out-of-Scope (OOD-OOS) queries and In-Domain but Out-of-Scope (ID-OOS) queries, where ID-OOS queries are semantically similar intents/queries with in-scope intents. Each domain in CLINC150 originally includes 15 intents. Each domain in the new dataset includes ten in-scope intents in this dataset, and the ID-OOS queries are built up based on five held-out semantically similar in-scope intents.

Both datasets can be used to conduct intent detection with and without OOD-OOS and ID-OOS queries

You can easily load the processed data:

class IntentExample:
    def __init__(self, text, label, do_lower_case):
        self.original_text = text
        self.text = text
        self.label = label

        if do_lower_case:
            self.text = self.text.lower()
        
def load_intent_examples(file_path, do_lower_case=True):
    examples = []

    with open('{}/seq.in'.format(file_path), 'r', encoding="utf-8") as f_text, open('{}/label'.format(file_path), 'r', encoding="utf-8") as f_label:
        for text, label in zip(f_text, f_label):
            e = IntentExample(text.strip(), label.strip(), do_lower_case)
            examples.append(e)

    return examples

More details can check code for load data and do random sampling for few-shot learning.

State-of-the art models and baselines

DNNC

Download pre-trained RoBERTa NLI checkpoint:

wget https://storage.googleapis.com/sfr-dnnc-few-shot-intent/roberta_nli.zip

Access to public code: Link

CONVERT

Download pre-trained checkpoint:

wget https://github.com/connorbrinton/polyai-models/releases/download/v1.0/model.tar.gz

Access to public code:

wget https://github.com/connorbrinton/polyai-models/archive/refs/tags/v1.0.zip

CONVBERT

Download pre-trained checkpoints:

Step-1: install AWS CL2: e.g., install MacOS PKG

Step-2:

aws s3 cp s3://dialoglue/ --no-sign-request `Your_folder_name` --recursive

Then the checkpoints are downloaded into Your_folder_name

Few-shot intent detection baselines/leaderboard:

5-shot learning

Model BANKING77 CLICN150 HWU64
RoBERTa+Classifier (EMNLP 2020) 74.04 87.99 75.56
USE (ACL 2020 NLP4ConvAI) 76.29 87.82 77.79
CONVERT (ACL 2020 NLP4ConvAI) 75.32 89.22 76.95
USE+CONVERT (ACL 2020 NLP4ConvAI) 77.75 90.49 80.01
CONVBERT+MLM+Example+Observers (NAACL 2021) - - -
DNNC (EMNLP 2020) 80.40 91.02 80.46
CPFT (EMNLP 2021) 80.86 92.34 82.03

10-shot learning

Model BANKING77 CLICN150 HWU64
RoBERTa+Classifier (EMNLP 2020) 84.27 91.55 82.90
USE (ACL 2020 NLP4ConvAI) 84.23 90.85 83.75
CONVERT(ACL 2020 NLP4ConvAI) 83.32 92.62 82.65
USE+CONVERT (ACL 2020 NLP4ConvAI) 85.19 93.26 85.83
CONVBERT (ArXiv 2020) 83.63 92.10 83.77
CONVBERT+MLM (ArXiv 2020) 83.99 92.75 84.52
CONVBERT+MLM+Example+Observers (NAACL 2021) 85.95 93.97 86.28
DNNC (EMNLP 2020) 86.71 93.76 84.72
CPFT (EMNLP 2021) 87.20 94.18 87.13

Note: the 5-shot learning results of RoBERTa+Classifier, DNNC and CPFT, and the 10-shot learning results of all the models are reported by the paper authors.

Citation

Please cite our paper if you use above resources in your work:

@article{zhang2020discriminative,
  title={Discriminative nearest neighbor few-shot intent detection by transferring natural language inference},
  author={Zhang, Jian-Guo and Hashimoto, Kazuma and Liu, Wenhao and Wu, Chien-Sheng and Wan, Yao and Yu, Philip S and Socher, Richard and Xiong, Caiming},
  journal={EMNLP},
  pages={5064--5082},
  year={2020}
}

@article{zhang2021pretrained,
  title={Are Pretrained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection},
  author={Zhang, Jian-Guo and Hashimoto, Kazuma and Wan, Yao and Liu, Ye and Xiong, Caiming and Yu, Philip S},
  journal={arXiv preprint arXiv:2106.04564},
  year={2021}
}

@article{zhang2021few,
  title={Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning},
  author={Zhang, Jianguo and Bui, Trung and Yoon, Seunghyun and Chen, Xiang and Liu, Zhiwei and Xia, Congying and Tran, Quan Hung and Chang, Walter and Yu, Philip},
  journal={EMNLP},
  year={2021}
}
Owner
Jian-Guo Zhang
Jian-Guo Zhang
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022