Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

Overview

LoFTR: Detector-Free Local Feature Matching with Transformers

Project Page | Paper


LoFTR: Detector-Free Local Feature Matching with Transformers
Jiaming Sun*, Zehong Shen*, Yu'ang Wang*, Hujun Bao, Xiaowei Zhou
CVPR 2021

demo_vid


Code release ETA

We plan to release the inference-only code and pretrained model within the upcoming week, stay tuned. The entire codebase for data pre-processing, training and validation is under major refactoring and will be released around June. Please subscribe to this discussion thread if you wish to be notified of the code release. In the meanwhile, discussions about the paper are welcomed in the discussion panel.

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@article{sun2021loftr,
  title={{LoFTR}: Detector-Free Local Feature Matching with Transformers},
  author={Sun, Jiaming and Shen, Zehong and Wang, Yuang and Bao, Hujun and Zhou, Xiaowei},
  journal={CVPR},
  year={2021}
}

Copyright

This work is affiliated with ZJU-SenseTime Joint Lab of 3D Vision, and its intellectual property belongs to SenseTime Group Ltd.

Copyright SenseTime. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022