Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

Overview

CRF - Conditional Random Fields

A library for dense conditional random fields (CRFs).

This is the official accompanying code for the paper Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond published at NeurIPS 2021 by Đ.Khuê Lê-Huu and Karteek Alahari. Please cite this paper if you use any part of this code, using the following BibTeX entry:

@inproceedings{lehuu2021regularizedFW,
  title={Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond},
  author={L\^e-Huu, \DJ.Khu\^e and Alahari, Karteek},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Currently the code is messy and undocumented, and we apology for that. We will make an effort to fix this soon. To facilitate the maintenance, the code and pre-trained models for the semantic segmentation task will be available in a separate repository.

Installation

git clone https://github.com/netw0rkf10w/CRF.git
cd CRF
python setup.py install

Usage

After having installed the package, you can create a CRF layer as follows:

import CRF

params = CRF.FrankWolfeParams(scheme='fixed', # constant stepsize
            stepsize=1.0,
            regularizer='l2',
            lambda_=1.0, # regularization weight
            lambda_learnable=False,
            x0_weight=0.5, # useful for training, set to 0 if inference only
            x0_weight_learnable=False)

crf = CRF.DenseGaussianCRF(classes=21,
                alpha=160,
                beta=0.05,
                gamma=3.0,
                spatial_weight=1.0,
                bilateral_weight=1.0,
                compatibility=1.0,
                init='potts',
                solver='fw',
                iterations=5,
                params=params)

Detailed documentation on the available options will be added later.

Below is an example of how to use this layer in combination with a CNN. We can define for example the following simple CNN-CRF module:

import torch

class CNNCRF(torch.nn.Module):
    """
    Simple CNN-CRF model
    """
    def __init__(self, cnn, crf):
        super().__init__()
        self.cnn = cnn
        self.crf = crf

    def forward(self, x):
        """
        x is a batch of input images
        """
        logits = self.cnn(x)
        logits = self.crf(x, logits)
        return logits

# Create a CNN-CRF model from given `cnn` and `crf`
# This is a PyTorch module that can be used in a usual way
model = CNNCRF(cnn, crf)

Acknowledgements

The CUDA implementation of the permutohedral lattice is due to https://github.com/MiguelMonteiro/permutohedral_lattice. An initial version of our permutohedral layer was based on https://github.com/Fettpet/pytorch-crfasrnn.

Owner
Đ.Khuê Lê-Huu
Đ.Khuê Lê-Huu
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022