Code for pre-training CharacterBERT models (as well as BERT models).

Overview

Pre-training CharacterBERT (and BERT)

This is a repository for pre-training BERT and CharacterBERT.

DISCLAIMER: The code was largely adapted from an older version of NVIDIA's repository for benchmarking the pre-training of BERT using Automatic Mixed Precision. The original code was tweaked to include CharacterBERT and other minor elements.

Python Environment

First of all, we will need to have a Python environment with the required packages installed.

NOTE: This was tested with NVIDIA V100 (16GB/32GB) GPUs and a cuda 10.2 installation.

# Create a Python 3.8 environment via conda 
conda create --name pretraining python=3.8 -y
conda activate pretraining

# For showing progress bars
pip install tqdm

# For extracting raw text from Wikipedia dumps
cd external/
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor/
git checkout 6490f5361d7658208ad7f8e5deeb56ee0fe9e02f
cd ../..

# For parsing Wikiextractor outputs to get Wikipedia text
pip install beautifulsoup4

# For segmenting documents into sentences
pip install nltk
python -c "import nltk;nltk.download('punkt')"

# For saving pre-training data into .hdf5 files
pip install h5py

# For basic tokenization and BERT/CharacterBERT models in PyTorch
cd external/
git clone https://github.com/helboukkouri/transformers.git
cd transformers/
git checkout 756b8efa698aad0294735376bc147909d1e6b959
pip install -e .
cd ../..

# Actual PyTorch installation
conda install pytorch=1.7.1 cudatoolkit=10.2 -c pytorch -y

# For monitoring training progress
pip install tensorboard

# For using Automatic Mixed Precision (speeds up training) 
# NOTE: this will require some space in /tmp/ during compilation
cd external/
git clone https://github.com/NVIDIA/apex.git
cd apex/
git checkout a78ccf0b3e3f7130b3f157732dc8e8e651389922
pip install \
    -v --disable-pip-version-check --no-cache-dir \
    --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ../..

# Configuration and vocabulary files for BERT (base, uncased)
mkdir ./data/bert-base-uncased/
cd ./data/bert-base-uncased/
wget https://huggingface.co/bert-base-uncased/resolve/main/config.json
wget https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt
cd ../..

# Configuration file for CharacterBERT (base, uncased)
mkdir ./data/character-bert/
cd ./data/character-bert/
wget https://huggingface.co/helboukkouri/character-bert/resolve/main/config.json
cd ../..

Now we can move on to the corpus preparation step.

Corpus Preparation

Downloading the corpus

First, we will need to get a corpus of texts. Let's download and use the 2021-01-01 dump of English Wikipedia.

Assuming that:

  • the environment variable $WORKDIR contains a path to this repository

  • we have already activated our conda environment using: conda activate pretraining

We can run this command to download the wikipedia dump

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en'

If you don't want to download the whole dump you can experiment with a sample first by adding the --debug flag.

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en' --debug

NOTE: if you use --debug then you will need to adapt all the commands by replacing the corpus name wikipedia_en with wikipedia_sample.

Extraction, Tokenization & Formatting

Since Wikipedia dumps come as a large .xml archives, we need to extract the process the file we just downloaded into a single .txt file with raw text. Then, we will need to format it in a specific way (one sentence per line and a blank line between sentences from different Wikipedia articles) to allow for generating examples for the Next Sentence Prediction task (NSP). We also tokenize each sentence to be able to easily generate Masked Language Modeling examples as well in future steps.

The following command runs both the extraction and formatting steps then removes the extracted document-level corpus only keeps the formatted sentence-level we need.

NOTE: you can remove the --delete_document_level_corpus flag to keep the original extracted corpus.

WORKDIR=$WORKDIR \
    python format_wikipedia.py \
        --archive_path=$WORKDIR/data/downloaded/wikipedia_en/wikipedia_en.xml.bz2 \
        --delete_document_level_corpus

After running the command above, you should be able to find a single text file in data/formatted/wikipedia_en/.

NOTE 1: if you want to use a corpus other than Wikipedia then add a component in utils/format and re-use the formatting step from format_wikipedia.py.

NOTE 2: if you want to process the whole English Wikipedia then run the command and forget about it, it will take a while... 😴 This process can probably be better optimized.

Pre-training Data generation

Now that we have our formatted Wikipedia corpus, there is one more step before we can actually run the pre-training. In fact, in order to pre-train models in a reasonable amount of time, we will be relying on multiple GPUs, DistributedDataParallel and the torch.distributed module. This will effectively have a copy of the model on each GPU, so we will need to split our corpus into shards (or chunks) so that each GPUs can process its own shard while others do the same.

First, we will split the corpus into 4096 training and 16 validation shards of equal size.

NOTE: you can change the amount of shards as you like. These numbers were chosen so to keep the memory requirement for loading a single shard relatively low as well as to keep validation steps (a single epoch through the validation shards) relatively fast.

WORKDIR=$WORKDIR \
    python make_shards.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt \
        --n_training_shards=4096 \
        --n_validation_shards=16 \
        --random_seed=42

The command above creates multiple training{n}.txt and validation.{n}.txt files in data/shards/wikipedia_en/.

The second and last step is to convert each shard into and .hdf5 file containing the actual pre-training data. But before doing that, we need to define a vocabulary for the Masked Language Modelling if we want to pre-train CharacterBERT.

NOTE 1: In fact, when pre-training BERT, since all original tokens from the corpus are split into elements of the WordPiece vocabulary, we can simply re-use this same vocabulary as a target space for MLM. And since CharacterBERT does not rely on WordPieces, it cannot do that and requires a fresh token vocabulary for Masked Language Modeling.

NOTE 2: Be careful when re-training a model from a domain A on texts from a domain B as this will require a new MLM vocabulary (for B) which in turn would require replacing the output layer in prior checkpoints (from A) before resuming pre-training. As for this version of the code, you will need to do that manually before running the pre-training.

WORKDIR=$WORKDIR \
    python build_mlm_vocabulary.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt

After building a MLM vocabulary (in cases where we want to pre-train CharacterBERT) we can now generate the data for both phases 1 and 2 of the pre-training process.

  • phase 1: maximum input length of 128 and maximum number of masked tokens per input of 20.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/128_20/ \
        --max_input_length=128 \
        --max_masked_tokens_per_input=20 \
        --is_character_bert  # change this accordingly
  • phase 2: maximum input length of 512 and maximum number of masked tokens per input of 80.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/512_80/ \
        --max_input_length=512 \
        --max_masked_tokens_per_input=80 \
        --is_character_bert  # change this accordingly

NOTE: if you want to generate data for BERT instead of CharacterBERT, remove the --is_character_bert flag and adapt the output_directory path.

Pre-training

Launching the pre-training

At this point we are all set to start pre-training models. For that, we can simply run the following bash scripts.

NOTE: you may need to change the value of WORKDIR in the pre-training scripts.

  • For phase 1:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_1.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_1.sh
  • For phase 2:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_2.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_2.sh

NOTE 1: you should change the NUM_GPUs variable inside the bash scripts to match the number of GPUs on your machine. The parallelization will be handled automatically.

NOTE 2: the bash scripts support distributed training on multiple gpus within a single node. Bash scripts that can run on multiple nodes with sbatch will be available soon.

Running the bash scripts on large enough corpora should produce good results. However, if you want to customize the pre-training process, you could change any of the parameters from pretrain_model.py.

For a complete list of parameters, run the following command.

WORKDIR=$WORKDIR python pretrain_model.py --help

In particular, if you don't want to run a validation step before each checkpoint you can remove the --do_validation flag. This will make the pre-training process faster but as a result you will not be able to tell if the language models are overfitting the training data.

Monitoring the pre-training

While the models are pre-training you can monitor the average training and validation losses (MLM + NSP loss) using TensorBoard.

tensorboard --logdir=$WORKDIR/.tensorboard_logs/

References

Please cite our paper if you use CharacterBERT in your work.

@inproceedings{el-boukkouri-etal-2020-characterbert,
    title = "{C}haracter{BERT}: Reconciling {ELM}o and {BERT} for Word-Level Open-Vocabulary Representations From Characters",
    author = "El Boukkouri, Hicham  and
      Ferret, Olivier  and
      Lavergne, Thomas  and
      Noji, Hiroshi  and
      Zweigenbaum, Pierre  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "International Committee on Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.coling-main.609",
    doi = "10.18653/v1/2020.coling-main.609",
    pages = "6903--6915",
    abstract = "Due to the compelling improvements brought by BERT, many recent representation models adopted the Transformer architecture as their main building block, consequently inheriting the wordpiece tokenization system despite it not being intrinsically linked to the notion of Transformers. While this system is thought to achieve a good balance between the flexibility of characters and the efficiency of full words, using predefined wordpiece vocabularies from the general domain is not always suitable, especially when building models for specialized domains (e.g., the medical domain). Moreover, adopting a wordpiece tokenization shifts the focus from the word level to the subword level, making the models conceptually more complex and arguably less convenient in practice. For these reasons, we propose CharacterBERT, a new variant of BERT that drops the wordpiece system altogether and uses a Character-CNN module instead to represent entire words by consulting their characters. We show that this new model improves the performance of BERT on a variety of medical domain tasks while at the same time producing robust, word-level, and open-vocabulary representations.",
}
Owner
Hicham EL BOUKKOURI
PhD Student working on Domain Adaptation of Word Embeddings.
Hicham EL BOUKKOURI
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023