AirLoop: Lifelong Loop Closure Detection

Overview

AirLoop

This repo contains the source code for paper:

Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv preprint arXiv:2109.08975 (2021).

Watch on YouTube

Demo

Examples of loop closure detection on each dataset. Note that our model is able to handle cross-environment loop closure detection despite only trained in individual environments sequentially:

Improved loop closure detection on TartanAir after extended training:

Usage

Dependencies

  • Python >= 3.5
  • PyTorch < 1.8
  • OpenCV >= 3.4
  • NumPy >= 1.19
  • Matplotlib
  • ConfigArgParse
  • PyYAML
  • tqdm

Data

We used the following subsets of datasets in our expriments:

  • TartanAir
    • Train/Test: abandonedfactory_night, carwelding, neighborhood, office2, westerndesert;
  • RobotCar
    • Train: 2014-11-28-12-07-13, 2014-12-10-18-10-50, 2014-12-16-09-14-09;
    • Test: 2014-06-24-14-47-45, 2014-12-05-15-42-07, 2014-12-16-18-44-24;
  • Nordland
    • Train/Test: All four seasons with recommended splits.

The datasets are aranged as follows:

$DATASET_ROOT/
├── tartanair/
│   ├── abandonedfactory_night/
│   └── ...
├── robotcar/
│   ├── train/
│   │   ├── 2014-11-28-12-07-13/
│   │   └── ...
│   └── test/
│       ├── 2014-06-24-14-47-45/
│       └── ...
└── nordland/
    ├── train/
    │   ├── fall_images_train/
    │   └── ...
    └── test/
        ├── fall_images_test/
        └── ...

Configuration

The following values in config/config.yaml need to be set:

  • dataset-root: The parent directory to all datasets ($DATASET_ROOT above);
  • catalog-dir: An (initially empty) directory for caching processed dataset index;
  • eval-gt-dir: An (initially empty) directory for groundtruth produced during evaluation.

Commandline

The following command will train a model sequentially (except for joint) in the specified envronments and evaluate the performance:

$ python main.py --dataset <tartanair/robotcar/nordland> --out-dir <OUT_DIR> --envs <LIST_OF_ENVIRONMENTS> --epochs <LIST_OF_EPOCHS> --method <finetune/si/ewc/kd/rkd/mas/rmas/airloop/joint>

--skip-train and --skip-eval can be specified to skip the train/test phase.

Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022