quantize aware training package for NCNN on pytorch

Related tags

Deep Learningncnnqat
Overview

ncnnqat

ncnnqat is a quantize aware training package for NCNN on pytorch.

Table of Contents

Installation

  • Supported Platforms: Linux

  • Accelerators and GPUs: NVIDIA GPUs via CUDA driver 10.1.

  • Dependencies:

    • python >= 3.5, < 4
    • pytorch >= 1.6
    • numpy >= 1.18.1
    • onnx >= 1.7.0
    • onnx-simplifier >= 0.3.6
  • Install ncnnqat via pypi:

    $ pip install ncnnqat (to do....)

    It is recommended to install from the source code

  • or Install ncnnqat via repo:

    $ git clone https://github.com/ChenShisen/ncnnqat
    $ cd ncnnqat
    $ make install

Usage

  • register_quantization_hook and merge_freeze_bn

    (suggest finetuning from a well-trained model, do it after a few epochs of training otherwise.)

    from ncnnqat import unquant_weight, merge_freeze_bn, register_quantization_hook
    ...
    ...
        for epoch in range(epoch_train):
            model.train()
        if epoch==well_epoch:
            register_quantization_hook(model)
        if epoch>=well_epoch:
            model = merge_freeze_bn(model)  #it will change bn to eval() mode during training
    ...
  • Unquantize weight before update it

    ...
    ... 
        if epoch>=well_epoch:
            model.apply(unquant_weight)  # using original weight while updating
        optimizer.step()
    ...
  • Save weight and save ncnn quantize table after train

    ...
    ...
        onnx_path = "./xxx/model.onnx"
        table_path="./xxx/model.table"
        dummy_input = torch.randn(1, 3, img_size, img_size, device='cuda')
        input_names = [ "input" ]
        output_names = [ "fc" ]
        torch.onnx.export(model, dummy_input, onnx_path, verbose=False, input_names=input_names, output_names=output_names)
        save_table(model,onnx_path=onnx_path,table=table_path)
    
    ...

    if use "model = nn.DataParallel(model)",pytorch unsupport torch.onnx.export,you should save state_dict first and prepare a new model with one gpu,then you will export onnx model.

    ...
    ...
        model_s = new_net() #
        model_s.cuda()
        register_quantization_hook(model_s)
        #model_s = merge_freeze_bn(model_s)
        onnx_path = "./xxx/model.onnx"
        table_path="./xxx/model.table"
        dummy_input = torch.randn(1, 3, img_size, img_size, device='cuda')
        input_names = [ "input" ]
        output_names = [ "fc" ]
        model_s.load_state_dict({k.replace('module.',''):v for k,v in model.state_dict().items()}) #model_s = model     model = nn.DataParallel(model)
              
        torch.onnx.export(model_s, dummy_input, onnx_path, verbose=False, input_names=input_names, output_names=output_names)
        save_table(model_s,onnx_path=onnx_path,table=table_path)
        
    
    ...

Code Examples

Cifar10 quantization aware training example.

python test/test_cifar10.py

SSD300 quantization aware training example.

   ln -s /your_coco_path/coco ./tests/ssd300/data
   python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --nnodes=1 \
    --node_rank=0 \
    ./tests/ssd300/main.py \
    -d ./tests/ssd300/data/coco
    python ./tests/ssd300/main.py --onnx_save  #load model dict, export onnx and ncnn table

Results

  • Cifar10

    result:

    net fp32(onnx) ncnnqat ncnn aciq ncnn kl
    mobilenet_v2 0.91 0.9066 0.9033 0.9066
    resnet18 0.94 0.93333 0.9367 0.937
  • SSD300(resnet18|coco)

    fp32:
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.193
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.344
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.191
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.042
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.195
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.328
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.199
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.293
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.309
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.084
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.326
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.501
    Current AP: 0.19269
    
    ncnnqat:
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.192
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.342
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.194
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.041
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.194
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.327
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.197
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.291
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.307
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.082
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.325
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.497
    Current AP: 0.19202
    

Todo

....

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022