Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Related tags

Deep Learningl2e
Overview

Learning to Execute (L2E)

Official code base for completely reproducing all results reported in

I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Installation

Initialize submodules:

git submodule init
git submodule update

Install rai-python

For rai-python, it is recommended to use this docker image.

If you want to install rai-python manually, follow instructions here. You will also need to install PhysX, ideally following these instructions.

Install gym-physx

Modify the path to rai-python/rai/rai/ry in gym-physx/gym_physx/envs/physx_pushing_env.py depending on your installation. Then install gym-physx using pip:

cd gym-physx
pip install .

Install gym-obstacles

In case you also want to run the 2D maze example with moving obstacles as introduced in section A.3, install gym-obstacles:

cd gym-obstacles
pip install .

Install our fork of stable-baselines3

cd stable-baselines3
pip install .

Reproduce figures

l2e/l2e/ contains code to reproduce the reults in the paper.

Figures consist of multiple experiments and are defined in plot_results.json.

Experiments are defined in config_$EXPERIMENT.json.

Intermediate and final results are saved to $scratch_root/$EXPERIMENT/ (configure $scratch_root in each config_$EXPERIMENT.json as well as in plot_results.json).

Step-by-step instructions to reproduce figures:

  1. Depending on experiment, use the following train scripts:

    1. For the RL runs ($EXPERIMENT=l2e* and $EXPERIMENT=her*)

      ./train.sh $EXPERIMENT
    2. For the Inverse Model runs ($EXPERIMENT=im_plan_basic and $EXPERIMENT=im_plan_obstacle_training)

      First collect data:

      ./imitation_data.sh $EXPERIMENT

      Then train inverse model

      ./imitation_learning.sh $EXPERIMENT
    3. For the Direct Execution runs ($EXPERIMENT=plan_basic and $EXPERIMENT=plan_obstacle)

      No training stage is needed here.

    ./train.sh $EXPERIMENT will launch multiple screens with multiple independent runs of $EXPERIMENT. The number of runs is configured using $AGENTS_MIN and $AGENTS_MAX in config_$EXPERIMENT.json.

    ./imitation_data.sh will launch $n_data_collect_workers workers for collecting data, and ./imitation_learning.sh will launch $n_training_workers runs training models independently.

  2. Evaluate results

    ./evaluate.sh $EXPERIMENT

    python evaluate.py $EXPERIMENT will launch multiple screens, one for each agent that was trained in step 1. python evaluate.py $EXPERIMENT will automatically scan for new training output, and only evaluate model checkpoints that haven't been evaluated yet.

  3. Plot results

    After all experiments are finished, create plots using

    python plot_results.py

    This will create all data figures contained in the paper. Figures are saved in l2e/figs/ (configure in plot_results.json)

Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023