Graph WaveNet apdapted for brain connectivity analysis.

Overview

Graph WaveNet for brain network analysis

This is the implementation of the Graph WaveNet model used in our manuscript:

S. Wein , A. Schüller, A. M. Tome, W. M. Malloni, M. W. Greenlee, and E. W. Lang, Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures.

The implementation is based on the Graph WaveNet proposed by:

Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph WaveNet for Deep Spatial-Temporal Graph Modeling, IJCAI 2019.

Requirements

  • pytroch>=1.00
  • scipy>=0.19.0
  • numpy>=1.12.1

Also a conda environment.yml file is provided. The environment can be installed with:

conda env create -f environment.yml

Run demo version

A short demo version is included in this repository, which can serve as a template to process your own MRI data. Artificial fMRI data is provided in the directory MRI_data/fMRI_sessions/ and the artificial timecourses have the shape (nodes,time). The adjacency matrix in form of the structural connectivity (SC) between brain regions can be stored in MRI_data/SC_matrix/. An artificial SC matrix with shape (nodes,nodes) is also provided in this demo version.

The training samples can be generated from the subject session data by running:

python generate_samples.py --input_dir=./MRI_data/fMRI_sessions/ --output_dir=./MRI_data/training_samples

The model can then be trained by running:

python gwn_for_brain_connectivity_train.py --data ./MRI_data/training_samples --save_predictions True

A Jupyter Notebook version is provided, which can be directly run in Google Colab with:

https://colab.research.google.com/github/simonvino/GraphWaveNet_brain_connectivity/blob/main/gwn_for_brain_connectivity_colab_demo.ipynb

Data availability

Preprocessed fMRI and DTI data from Human Connectome Project data is publicly available under: https://db.humanconnectome.org.

A nice tutorial on white matter tracktography for creating a SC matrix is available under: https://osf.io/fkyht/.

Citations

Our arXiv manuscript can be cited as:

@misc{Wein2021GNNs_bc,
      title={Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures}, 
      author={Simon Wein and Alina Schüller and Ana Maria Tomé and Wilhelm M. Malloni and Mark W. Greenlee and Elmar W. Lang},
      year={2021},
      eprint={2112.04266},
      archivePrefix={arXiv},
      primaryClass={q-bio.NC}
}

And the model architecture was originally proposed by Wu et al.:

@inproceedings{Wu2019_GWN_traffic,
  title={Graph WaveNet for Deep Spatial-Temporal Graph Modeling},
  author={Wu, Zonghan and Pan, Shirui and Long, Guodong and Jiang, Jing and Zhang, Chengqi},
  booktitle={Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)},
  year={2019}
}
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023