Graph WaveNet apdapted for brain connectivity analysis.

Overview

Graph WaveNet for brain network analysis

This is the implementation of the Graph WaveNet model used in our manuscript:

S. Wein , A. Schüller, A. M. Tome, W. M. Malloni, M. W. Greenlee, and E. W. Lang, Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures.

The implementation is based on the Graph WaveNet proposed by:

Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph WaveNet for Deep Spatial-Temporal Graph Modeling, IJCAI 2019.

Requirements

  • pytroch>=1.00
  • scipy>=0.19.0
  • numpy>=1.12.1

Also a conda environment.yml file is provided. The environment can be installed with:

conda env create -f environment.yml

Run demo version

A short demo version is included in this repository, which can serve as a template to process your own MRI data. Artificial fMRI data is provided in the directory MRI_data/fMRI_sessions/ and the artificial timecourses have the shape (nodes,time). The adjacency matrix in form of the structural connectivity (SC) between brain regions can be stored in MRI_data/SC_matrix/. An artificial SC matrix with shape (nodes,nodes) is also provided in this demo version.

The training samples can be generated from the subject session data by running:

python generate_samples.py --input_dir=./MRI_data/fMRI_sessions/ --output_dir=./MRI_data/training_samples

The model can then be trained by running:

python gwn_for_brain_connectivity_train.py --data ./MRI_data/training_samples --save_predictions True

A Jupyter Notebook version is provided, which can be directly run in Google Colab with:

https://colab.research.google.com/github/simonvino/GraphWaveNet_brain_connectivity/blob/main/gwn_for_brain_connectivity_colab_demo.ipynb

Data availability

Preprocessed fMRI and DTI data from Human Connectome Project data is publicly available under: https://db.humanconnectome.org.

A nice tutorial on white matter tracktography for creating a SC matrix is available under: https://osf.io/fkyht/.

Citations

Our arXiv manuscript can be cited as:

@misc{Wein2021GNNs_bc,
      title={Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures}, 
      author={Simon Wein and Alina Schüller and Ana Maria Tomé and Wilhelm M. Malloni and Mark W. Greenlee and Elmar W. Lang},
      year={2021},
      eprint={2112.04266},
      archivePrefix={arXiv},
      primaryClass={q-bio.NC}
}

And the model architecture was originally proposed by Wu et al.:

@inproceedings{Wu2019_GWN_traffic,
  title={Graph WaveNet for Deep Spatial-Temporal Graph Modeling},
  author={Wu, Zonghan and Pan, Shirui and Long, Guodong and Jiang, Jing and Zhang, Chengqi},
  booktitle={Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)},
  year={2019}
}
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022