A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Overview

Torch-RGCN

Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in
Modeling Relational Data with Graph Convolutional Networks.

In our paper, we reproduce the link prediction and node classification experiments from the original paper and using our reproduction we explain the RGCN. Furthermore, we present two new configurations of the RGCN.

Getting started

Requirements:

  • Conda >= 4.8
  • Python >= 3.7

Do the following:

  1. Download all datasets: bash get_data.sh

  2. Install the dependencies inside a new virtual environment: bash setup_dependencies.sh

  3. Activate the virtual environment: conda activate torch_rgcn_venv

  4. Install the torch-RGCN module: pip install -e .

Usage

Configuration files

The hyper-parameters for the different experiments can be found in YAML files under configs. The naming convention of the files is as follows: configs/{MODEL}/{EXPERIMENT}-{DATASET}.yaml

Models

  • rgcn - Standard RGCN Model
  • c-rgcn - Compression RGCN Model
  • e-rgcn - Embedding RGCN Model

Experiments

  • lp - Link Prediction
  • nc - Node Classification

Datasets

Link Prediction

  • WN18
  • FB-Toy

Node Classification

  • AIFB
  • MUTAG
  • BGS
  • AM

Part 1: Reproduction

Link Prediction

Link Prediction Model

Original Link Prediction Implementation: https://github.com/MichSchli/RelationPrediction

To run the link prediction experiment using the RGCN model using:

python experiments/predict_links.py with configs/rgcn/lp-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: FB-toy or WN18.

Node Classification

Node Classification Model

Original Node Classification Implementation: https://github.com/tkipf/relational-gcn

To run the node classification experiment using the RGCN model using:

python experiments/classify_nodes.py with configs/rgcn/nc-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: AIFB, MUTAG, BGS or AM.

Part 2: New RGCN Configurations

Node Classification with Node Embeddings

To run the node classification experiment use:

python experiments/classify_nodes.py with configs/e-rgcn/nc-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: AIFB, MUTAG, BGS or AM.

Link Prediction Compressed Node Embeddings

c-RGCN Link Prediction Model

To run the link prediction experiment use:

python experiments/predict_links.py with configs/c-rgcn/lp-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: FB-toy, or WN18.


Dataset References

Node Classification

Link Prediction

Owner
Thiviyan Singam
PhD candidate at University of Amsterdam
Thiviyan Singam
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022