CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

Overview

CaFM-pytorch ICCV ACCEPT

Introduction of dataset VSD4K

Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city. Each category is consisted of various video length, including: 15s, 30s, 45s, etc. For a specific category and its specific video length, there are 3 scaling factors: x2, x3 and x4. In each file, there are HR images and its corresponding LR images. 1-n are training images , n - (n + n/10) are test images. (we select test image 1 out of 10). The dataset can be obtained from [https://pan.baidu.com/s/14pcsC7taB4VAa3jvyw1kog] (passward:u1qq) and google drive [https://drive.google.com/drive/folders/17fyX-bFc0IUp6LTIfTYU8R5_Ot79WKXC?usp=sharing].

e.g.:game 15s
dataroot_gt: VSD4K/game/game_15s_1/DIV2K_train_HR/00001.png
dataroot_lqx2: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X4/00001_x4.png

Proposed method

Introduction

Our paper "Overfitting the Data: Compact Neural Video Delivery via Content-aware Feature Modulation" has been submitted to 2021 ICCV. we aim to use super resolution network to improve the quality of video delivery recently. The whole precedure is shown below. We devide the whole video into several chunks and apply a joint training framework with Content aware Feature Module(CaFM) to train each chunk simultaneously. With our method, each video chunk only requires less than 1% of original parameters to be streamed, achieving even better SR performance. We conduct extensive experiments across various SR backbones(espcn,srcnn,vdsr,edsr16,edsr32,rcan), video time length(15s-10min), and scaling factors(x2-x4) to demonstrate the advantages of our method. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

Figure 1. The whole procedure of adopting content-aware DNNs for video delivery. A video is first divided into several chunks and the server trains one model for each chunk. Then the server delivers LR video chunks and models to client. The client runs the inference to super-resolve the LR chunks and obtain the SR video.

Quantitative results

We show our quantitative results in the table below. For simplicity, we only demonstrate the results on game and vlog datasets. We compare our method M{1-n} with M0 and S{1-n}. The experiments are conducted on EDSR.

  • M0: a EDSR without CaFM module, train on whole video.
  • Si: a EDSR without a CaFM module, train on one specific chunk i.
  • M{1-n}ours: a EDSR with n CaFM modules, train on n chunks simultaneously.
Dataset Game15s Game30s Game45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 42.24 35.88 33.44 41.84 35.54 33.05 42.11 35.75 33.33
S{1-n} 42.82 36.42 34.00 43.07 36.73 34.17 43.22 36.72 34.32
M{1-n} Ours 43.13 37.04 34.47 43.37 37.12 34.58 43.46 37.31 34.79
Dataset Vlog15s Vlog30s Vlog45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 48.87 44.51 42.58 47.79 43.38 41.24 47.98 43.58 41.53
S{1-n} 49.10 44.80 42.83 48.20 43.68 41.55 48.48 44.12 42.12
M{1-n} Ours 49.30 45.03 43.11 48.55 44.15 42.16 48.61 44.24 42.39

Quatitative results

We show the quatitative results in the figure below.

  • bicubic: SR images are obtained by bicubic
  • H.264/H.265: use the default setting of FFmpeg to generate the H.264 and H.265 videos

Dependencies

  • Python >= 3.6
  • Torch >= 1.0.0
  • opencv-python
  • numpy
  • skimage
  • imageio
  • matplotlib

Quickstart

M0 demotes the model without Cafm module which is trained on the whole dataset. S{1-n} denotes n models that trained on n chunks of video. M{1-n} demotes one model along with n Cafm modules that trained on the whole dataset. M{1-n} is our proposed method.

How to set data_range

n is the total frames in a video. We select one test image out of 10 training images. Thus, in VSD4K, 1-n is its training dataset, n-(n+/10) is the test dataset. Generally, we set 5s as the length of one chunk. Hence, 15s consists 3 chunks, 30s consists 6 chunks, etc.

Video length(train images + test images) chunks M0/M{1-n} S1 S2 S3 S4 S5 S6 S7 S8 S9
15s(450+45) 3 1-450/451-495 1-150/451-465 151-300/466-480 301-450/481-495 - - - - - -
30s(900+95) 6 1-900/901-990 1-150/901-915 151-300/916-930 301-450/931-945 451-600/946-960 601-750/961-975 751-900/976-990 - - -
45s(1350+135) 9 1-1350/1351-1485 1-150/1351-1365 151-300/1366-1380 301-450/1381-1395 451-600/1396-1410 601-750/1411-1425 751-900/1426-1440 901-1050/1441-1455 1051-1200/1456-1470 1201-1350/1471-1485

Train

For simplicity, we only demonstrate how to train 'game_15s' by our method.

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

You can apply our method on your own images. Place your HR images under YOURS/DIV2K_train_HR/, with the name start from 00001.png. Place your corresponding LR images under YOURS/DIV2K_train_LR_bicubic/X2, with the name start from 00001_x2.png.

e.g.:
dataroot_gt: YOURS/DIV2K_train_HR/00001.png
dataroot_lqx2: YOURS/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: YOURS/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: YOURS/DIV2K_train_LR_bicubic/X4/00001_x4.png
  • The running command is like:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
  • For example:
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

Test

For simplicity, we only demonstrate how to run 'game' category of 15s. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale {scale factor} --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --test_only --pre_train {path to pretrained model} --data_range {train_range} --{is15s/is30s/is45s} --cafm  --dir_data {path of data} --use_cafm --segnum 3
e.g.:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale 4 --model EDSR --test_only --pre_train /home/CaFM-pytorch/experiment/edsr_x2_p48_game_15s_1_seg1-3_batch64_k1_g64/model/model_best.pt --data_range 1-150 --is15s --cafm  --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --segnum 3

Additional

We also demonstrate our method in vimeo dataset and HEVC test sequence. These datasets and all trained models will be released as soon as possible. By the way, we add SEFCNN.py into our backbone list which is suggested by reviewer.The code will be updated regularly.

Acknowledgment

AdaFM proposed a closely related method for continual modulation of restoration levels. While they aimed to handle arbitrary restoration levels between a start and an end level, our goal is to compress the models of different chunks for video delivery. The reader is encouraged to review their work for more details. Please also consider to cite AdaFM if you use the code. [https://github.com/hejingwenhejingwen/AdaFM]

Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022