Additional environments compatible with OpenAI gym

Overview

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning

A codebase for training reinforcement learning policies for quadrotor swarms. Includes:

Paper: https://arxiv.org/abs/2109.07735

Website: https://sites.google.com/view/swarm-rl

Installation

Initialize a Python environment, i.e. with conda (Python versions 3.6-3.8 are supported):

conda create -n swarm-rl python=3.8
conda activate swarm-rl

Clone and install this repo as an editable Pip package:

git clone https://github.com/alex-petrenko/quad-swarm-rl
cd quad-swarm-rl
pip install -e .

This should pull and install all the necessary dependencies, including Sample Factory and PyTorch.

Running experiments

Train

This will run the baseline experiment. Change the number of workers appropriately to match the number of logical CPU cores on your machine, but it is advised that the total number of simulated environments is close to that in the original command:

python -m swarm_rl.train --env=quadrotor_multi --train_for_env_steps=1000000000 --algo=APPO \
--use_rnn=False \
--num_workers=36 --num_envs_per_worker=4 \
--learning_rate=0.0001 --ppo_clip_value=5.0 \
--recurrence=1 --nonlinearity=tanh --actor_critic_share_weights=False \
--policy_initialization=xavier_uniform --adaptive_stddev=False --with_vtrace=False \
--max_policy_lag=100000000 --hidden_size=256 --gae_lambda=1.00 --max_grad_norm=5.0 \
--exploration_loss_coeff=0.0 --rollout=128 --batch_size=1024 --quads_use_numba=True \
--quads_mode=mix --quads_episode_duration=15.0 --quads_formation_size=0.0 \
--encoder_custom=quad_multi_encoder --with_pbt=False --quads_collision_reward=5.0 \
--quads_neighbor_hidden_size=256 --neighbor_obs_type=pos_vel --quads_settle_reward=0.0 \
--quads_collision_hitbox_radius=2.0 --quads_collision_falloff_radius=4.0 --quads_local_obs=6 \
--quads_local_metric=dist --quads_local_coeff=1.0 --quads_num_agents=8 --quads_collision_reward=5.0 \
--quads_collision_smooth_max_penalty=10.0 --quads_neighbor_encoder_type=attention \
--replay_buffer_sample_prob=0.75 --anneal_collision_steps=300000000 --experiment=swarm_rl 

Or, even better, you can use the runner scripts in swarm_rl/runs/. Runner scripts (a Sample Factory feature) are Python files that contain experiment parameters, and support features such as evaluation on multiple seeds and gridsearches.

To execute a runner script run the following command:

python -m sample_factory.runner.run --run=swarm_rl.runs.quad_multi_mix_baseline_attn --runner=processes --max_parallel=4 --pause_between=1 --experiments_per_gpu=1 --num_gpus=4

This command will start training four different seeds in parallel on a 4-GPU server. Adjust the parameters accordingly to match your hardware setup.

To monitor the experiments, go to the experiment folder, and run the following command:

tensorboard --logdir=./

Test

To test the trained model, run the following command:

python -m swarm_rl.enjoy --algo=APPO --env=quadrotor_multi --replay_buffer_sample_prob=0 --continuous_actions_sample=False --quads_use_numba=False --train_dir=PATH_TO_PROJECT/swarm_rl/train_dir --experiments_root=EXPERIMENT_ROOT --experiment=EXPERIMENT_NAME

Unit Tests

To run unit tests:

./run_tests.sh
Owner
Zhehui Huang
Zhehui Huang
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022