Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Overview

Adversarial Attacks on Knowledge Graph Embeddings
via Instance Attribution Methods

This is the code repository to accompany the EMNLP 2021 paper on adversarial attacks on KGE models.
For any questions or feedback, add an issue or email me at: [email protected]

Overview

The figure illustrates adversarial attacks against KGE models for fraud detection. The knowledge graph consists of two types of entities - Person and BankAccount. The missing target triple to predict is (Sam, allied_with, Joe). Original KGE model predicts this triple as True, i.e. assigns it a higher score relative to synthetic negative triples. But a malicious attacker uses the instance attribution methods to either (a) delete an adversarial triple or (b) add an adversarial triple. Now, the KGE model predicts the missing target triple as False.

The attacker uses the instance attribution methods to identify the training triples that are most influential for model's prediciton on the target triple. These influential triples are used as adversarial deletions. Using the influential triple, the attacker further selects adversarial additions by replacing one of the two entities of the influential triple with the most dissimilar entity in the embedding space. For example, if the attacker identifies that (Sam, deposits_to, Suspicious_Account) is the most influential triple for predicting (Sam, allied_with, Joe), then they can add (Sam, deposits_to, Non_Suspicious_Account) to reduce the influence of the influential triple.

Reproducing the results

Setup

  • python = 3.8.5
  • pytorch = 1.4.0
  • numpy = 1.19.1
  • jupyter = 1.0.0
  • pandas = 1.1.0
  • matplotlib = 3.2.2
  • scikit-learn = 0.23.2
  • seaborn = 0.11.0

Experiments reported in the paper were run in the conda environment attribution_attack.yml.

Steps

  • The codebase and the bash scripts used for experiments are in KGEAttack.
  • To preprocess the original dataset, use the bash script preprocess.sh.
  • For each model-dataset combination, there is a bash script to train the original model, generate attacks from baselines and proposed attacks; and train poisoned model. These scripts are named as model-dataset.sh.
  • The instructions in these scripts are grouped together under the echo statements which indicate what they do.
  • The commandline argument --reproduce-results uses the hyperparameters that were used for the experiments reported in the paper. These hyperparameter values can be inspected in the function set_hyperparams() in utils.py.
  • To reproduce the results, specific instructions from the bash scripts can be run on commandline or the full script can be run.
  • All experiments in the paper were run on a shared HPC cluster that had Nvidia RTX 2080ti, Tesla K40 and V100 GPUs.

References

Parts of this codebase are based on the code from following repositories

Citation

@inproceedings{bhardwaj-etal-2021-adversarial,
    title = "Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods",
    author = "Bhardwaj, Peru  and
      Kelleher, John  and
      Costabello, Luca  and
      O{'}Sullivan, Declan",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.648",
    pages = "8225--8239",
    }
Owner
Peru Bhardwaj
PhD Student, Trinity College Dublin, Ireland.
Peru Bhardwaj
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022