CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

Overview

CausalNLP

CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

Install

  1. pip install -U pip
  2. pip install causalnlp

Usage

Example: What is the causal impact of a positive review on a product click?

import pandas as pd
df = pd.read_csv('sample_data/music_seed50.tsv', sep='\t', error_bad_lines=False)

The file music_seed50.tsv is a semi-simulated dataset from here. Columns of relevance include:

  • Y_sim: outcome, where 1 means product was clicked and 0 means not.
  • text: raw text of review
  • rating: rating associated with review (1 through 5)
  • T_true: 1 means rating less than 3, 0 means rating of 5, where T_true affects the outcome Y_sim.
  • T_ac: an approximation of true review sentiment (T_true) created with Autocoder from raw review text
  • C_true:confounding categorical variable (1=audio CD, 0=other)

We'll pretend the true sentiment (i.e., review rating and T_true) is hidden and only use T_ac as the treatment variable.

Using the text_col parameter, we include the raw review text as another "controlled-for" variable.

from causalnlp.causalinference import CausalInferenceModel
from lightgbm import LGBMClassifier
cm = CausalInferenceModel(df, 
                         metalearner_type='t-learner', learner=LGBMClassifier(num_leaves=500),
                         treatment_col='T_ac', outcome_col='Y_sim', text_col='text',
                         include_cols=['C_true'])
cm.fit()
outcome column (categorical): Y_sim
treatment column: T_ac
numerical/categorical covariates: ['C_true']
text covariate: text
preprocess time:  1.1179866790771484  sec
start fitting causal inference model
time to fit causal inference model:  10.361494302749634  sec

Estimating Treatment Effects

CausalNLP supports estimation of heterogeneous treatment effects (i.e., how causal impacts vary across observations, which could be documents, emails, posts, individuals, or organizations).

We will first calculate the overall average treatment effect (or ATE), which shows that a positive review increases the probability of a click by 13 percentage points in this dataset.

Average Treatment Effect (or ATE):

print( cm.estimate_ate() )
{'ate': 0.1309311542209525}

Conditional Average Treatment Effect (or CATE): reviews that mention the word "toddler":

print( cm.estimate_ate(df['text'].str.contains('toddler')) )
{'ate': 0.15559234254638685}

Individualized Treatment Effects (or ITE):

test_df = pd.DataFrame({'T_ac' : [1], 'C_true' : [1], 
                        'text' : ['I never bought this album, but I love his music and will soon!']})
effect = cm.predict(test_df)
print(effect)
[[0.80538201]]

Model Interpretability:

print( cm.interpret(plot=False)[1][:10] )
v_music    0.079042
v_cd       0.066838
v_album    0.055168
v_like     0.040784
v_love     0.040635
C_true     0.039949
v_just     0.035671
v_song     0.035362
v_great    0.029918
v_heard    0.028373
dtype: float64

Features with the v_ prefix are word features. C_true is the categorical variable indicating whether or not the product is a CD.

Text is Optional in CausalNLP

Despite the "NLP" in CausalNLP, the library can be used for causal inference on data without text (e.g., only numerical and categorical variables). See the examples for more info.

Documentation

API documentation and additional usage examples are available at: https://amaiya.github.io/causalnlp/

How to Cite

Please cite the following paper when using CausalNLP in your work:

@article{maiya2021causalnlp,
    title={CausalNLP: A Practical Toolkit for Causal Inference with Text},
    author={Arun S. Maiya},
    year={2021},
    eprint={2106.08043},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    journal={arXiv preprint arXiv:2106.08043},
}
You might also like...
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of given options.

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

This is a repository for a semantic segmentation inference API using the OpenVINO toolkit
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone [email protected]

Comments
  • Does your model support other languages than English?

    Does your model support other languages than English?

    Hi Amaiya, Thanks for your great package. Would you kindly let me know if your package supports languages other than English when using CausalBert?

    I'm also interested in knowing whether I can exploit other Transformers models from the Huggingface hub?

    question 
    opened by behroozazarkhalili 1
  • Error while fitting the model

    Error while fitting the model

    Hi,

    I ran to this bug while fitting the model. I checked the data and everything looks good. I don't get the root cause of this error.

    File /opt/conda/lib/python3.8/site-packages/causalnlp/meta/slearner.py:80, in BaseSLearner.fit(self, X, treatment, y, p)
         78 mask = (treatment == group) | (treatment == self.control_name)
         79 treatment_filt = treatment[mask]
    ---> 80 X_filt = X[mask]
         81 y_filt = y[mask]
         83 w = (treatment_filt == group).astype(int)
    
    IndexError: boolean index did not match indexed array along dimension 0
    
    opened by hfarhidzadeh 1
Releases(v0.7.0)
  • v0.7.0(Aug 2, 2022)

  • v0.6.0(Oct 20, 2021)

    0.6.0 (2021-10-20)

    New:

    • Added model_name parameter to CausalBertModel to support other DistilBert models (e.g., multilingual)

    Changed

    • N/A

    Fixed:

    • N/A
    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Sep 3, 2021)

    0.5.0 (2021-09-03)

    New:

    • Added support for CausalBert

    Changed

    • Added p parameter to CausalInferenceModel.fit and CausalInferenceModel.predict for user-supplied propensity scores in X-Learner and R-Learner.
    • Removed CV from propensity score computations in X-Learner and R-Learner and increase default max_iter to 10000

    Fixed:

    • Resolved problem with CausalInferenceModel.tune_and_use_default_learner when outcome is continuous
    • Changed to max_iter=10000 for default LogisticRegression base learner
    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Sep 3, 2021)

    0.4.0 (2021-07-20)

    New:

    • N/A

    Changed

    • Use LinearRegression and LogisticRegression as default base learners for s-learner.
    • changed parameter name of metalearner_type to method in CausalInferenceModel.

    Fixed:

    • Resolved mis-references in _balance method (renamed from _minimize_bias).
    • Fixed convergence issues and factored out propensity score computations to CausalInferenceModel.compute_propensity_scores.
    Source code(tar.gz)
    Source code(zip)
  • v0.3.1(Jul 19, 2021)

  • v0.3.0(Jul 15, 2021)

    0.3.0 (2021-07-15)

    New:

    • Added CausalInferenceModel.evaluate_robustness method to assess robustness of causal estimates using sensitivity analysis

    Changed

    • reduced dependencies with local metalearner implementations

    Fixed:

    • N/A
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 21, 2021)

  • v0.1.3(Jun 17, 2021)

  • v0.1.2(Jun 17, 2021)

    0.1.2 (2021-06-17)

    New:

    • N/A

    Changed

    • Better interpretability and explainability of treatment effects

    Fixed:

    • Fixes to some bugs in preprocessing
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Jun 17, 2021)

  • v0.1.0(Jun 16, 2021)

Owner
Arun S. Maiya
computer scientist
Arun S. Maiya
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022