CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

Overview

CausalNLP

CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

Install

  1. pip install -U pip
  2. pip install causalnlp

Usage

Example: What is the causal impact of a positive review on a product click?

import pandas as pd
df = pd.read_csv('sample_data/music_seed50.tsv', sep='\t', error_bad_lines=False)

The file music_seed50.tsv is a semi-simulated dataset from here. Columns of relevance include:

  • Y_sim: outcome, where 1 means product was clicked and 0 means not.
  • text: raw text of review
  • rating: rating associated with review (1 through 5)
  • T_true: 1 means rating less than 3, 0 means rating of 5, where T_true affects the outcome Y_sim.
  • T_ac: an approximation of true review sentiment (T_true) created with Autocoder from raw review text
  • C_true:confounding categorical variable (1=audio CD, 0=other)

We'll pretend the true sentiment (i.e., review rating and T_true) is hidden and only use T_ac as the treatment variable.

Using the text_col parameter, we include the raw review text as another "controlled-for" variable.

from causalnlp.causalinference import CausalInferenceModel
from lightgbm import LGBMClassifier
cm = CausalInferenceModel(df, 
                         metalearner_type='t-learner', learner=LGBMClassifier(num_leaves=500),
                         treatment_col='T_ac', outcome_col='Y_sim', text_col='text',
                         include_cols=['C_true'])
cm.fit()
outcome column (categorical): Y_sim
treatment column: T_ac
numerical/categorical covariates: ['C_true']
text covariate: text
preprocess time:  1.1179866790771484  sec
start fitting causal inference model
time to fit causal inference model:  10.361494302749634  sec

Estimating Treatment Effects

CausalNLP supports estimation of heterogeneous treatment effects (i.e., how causal impacts vary across observations, which could be documents, emails, posts, individuals, or organizations).

We will first calculate the overall average treatment effect (or ATE), which shows that a positive review increases the probability of a click by 13 percentage points in this dataset.

Average Treatment Effect (or ATE):

print( cm.estimate_ate() )
{'ate': 0.1309311542209525}

Conditional Average Treatment Effect (or CATE): reviews that mention the word "toddler":

print( cm.estimate_ate(df['text'].str.contains('toddler')) )
{'ate': 0.15559234254638685}

Individualized Treatment Effects (or ITE):

test_df = pd.DataFrame({'T_ac' : [1], 'C_true' : [1], 
                        'text' : ['I never bought this album, but I love his music and will soon!']})
effect = cm.predict(test_df)
print(effect)
[[0.80538201]]

Model Interpretability:

print( cm.interpret(plot=False)[1][:10] )
v_music    0.079042
v_cd       0.066838
v_album    0.055168
v_like     0.040784
v_love     0.040635
C_true     0.039949
v_just     0.035671
v_song     0.035362
v_great    0.029918
v_heard    0.028373
dtype: float64

Features with the v_ prefix are word features. C_true is the categorical variable indicating whether or not the product is a CD.

Text is Optional in CausalNLP

Despite the "NLP" in CausalNLP, the library can be used for causal inference on data without text (e.g., only numerical and categorical variables). See the examples for more info.

Documentation

API documentation and additional usage examples are available at: https://amaiya.github.io/causalnlp/

How to Cite

Please cite the following paper when using CausalNLP in your work:

@article{maiya2021causalnlp,
    title={CausalNLP: A Practical Toolkit for Causal Inference with Text},
    author={Arun S. Maiya},
    year={2021},
    eprint={2106.08043},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    journal={arXiv preprint arXiv:2106.08043},
}
You might also like...
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of given options.

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

This is a repository for a semantic segmentation inference API using the OpenVINO toolkit
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone [email protected]

Comments
  • Does your model support other languages than English?

    Does your model support other languages than English?

    Hi Amaiya, Thanks for your great package. Would you kindly let me know if your package supports languages other than English when using CausalBert?

    I'm also interested in knowing whether I can exploit other Transformers models from the Huggingface hub?

    question 
    opened by behroozazarkhalili 1
  • Error while fitting the model

    Error while fitting the model

    Hi,

    I ran to this bug while fitting the model. I checked the data and everything looks good. I don't get the root cause of this error.

    File /opt/conda/lib/python3.8/site-packages/causalnlp/meta/slearner.py:80, in BaseSLearner.fit(self, X, treatment, y, p)
         78 mask = (treatment == group) | (treatment == self.control_name)
         79 treatment_filt = treatment[mask]
    ---> 80 X_filt = X[mask]
         81 y_filt = y[mask]
         83 w = (treatment_filt == group).astype(int)
    
    IndexError: boolean index did not match indexed array along dimension 0
    
    opened by hfarhidzadeh 1
Releases(v0.7.0)
  • v0.7.0(Aug 2, 2022)

  • v0.6.0(Oct 20, 2021)

    0.6.0 (2021-10-20)

    New:

    • Added model_name parameter to CausalBertModel to support other DistilBert models (e.g., multilingual)

    Changed

    • N/A

    Fixed:

    • N/A
    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Sep 3, 2021)

    0.5.0 (2021-09-03)

    New:

    • Added support for CausalBert

    Changed

    • Added p parameter to CausalInferenceModel.fit and CausalInferenceModel.predict for user-supplied propensity scores in X-Learner and R-Learner.
    • Removed CV from propensity score computations in X-Learner and R-Learner and increase default max_iter to 10000

    Fixed:

    • Resolved problem with CausalInferenceModel.tune_and_use_default_learner when outcome is continuous
    • Changed to max_iter=10000 for default LogisticRegression base learner
    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Sep 3, 2021)

    0.4.0 (2021-07-20)

    New:

    • N/A

    Changed

    • Use LinearRegression and LogisticRegression as default base learners for s-learner.
    • changed parameter name of metalearner_type to method in CausalInferenceModel.

    Fixed:

    • Resolved mis-references in _balance method (renamed from _minimize_bias).
    • Fixed convergence issues and factored out propensity score computations to CausalInferenceModel.compute_propensity_scores.
    Source code(tar.gz)
    Source code(zip)
  • v0.3.1(Jul 19, 2021)

  • v0.3.0(Jul 15, 2021)

    0.3.0 (2021-07-15)

    New:

    • Added CausalInferenceModel.evaluate_robustness method to assess robustness of causal estimates using sensitivity analysis

    Changed

    • reduced dependencies with local metalearner implementations

    Fixed:

    • N/A
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 21, 2021)

  • v0.1.3(Jun 17, 2021)

  • v0.1.2(Jun 17, 2021)

    0.1.2 (2021-06-17)

    New:

    • N/A

    Changed

    • Better interpretability and explainability of treatment effects

    Fixed:

    • Fixes to some bugs in preprocessing
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Jun 17, 2021)

  • v0.1.0(Jun 16, 2021)

Owner
Arun S. Maiya
computer scientist
Arun S. Maiya
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022