[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

Related tags

Deep LearningBE
Overview

TBE

The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning" [arxiv] [code][Project Website]

image

Citation

@inproceedings{wang2021removing,
  title={Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning},
  author={Wang, Jinpeng and Gao, Yuting and Li, Ke and Lin, Yiqi and Ma, Andy J and Cheng, Hao and Peng, Pai and Ji, Rongrong and Sun, Xing},
  booktitle={CVPR},
  year={2021}
}

News

[2020.3.7] The first version of TBE are released!

0. Motivation

  • In camera-fixed situation, the static background in most frames remain similar in pixel-distribution.

  • We ask the model to be temporal sensitive rather than static sensitive.

  • We ask model to filter the additive Background Noise, which means to erasing background in each frame of the video.

Activation Map Visualization of BE

GIF

More hard example

2. Plug BE into any self-supervised learning method in two steps

The impementaion of BE is very simple, you can implement it in two lines by python:

rand_index = random.randint(t)
mixed_x[j] = (1-prob) * x + prob * x[rand_index]

Then, just need define a loss function like MSE:

loss = MSE(F(mixed_x),F(x))

2. Installation

Dataset Prepare

Please refer to [dataset.md] for details.

Requirements

  • Python3
  • pytorch1.1+
  • PIL
  • Intel (on the fly decode)
  • Skvideo.io
  • Matplotlib (gradient_check)

As Kinetics dataset is time-consuming for IO, we decode the avi/mpeg on the fly. Please refer to data/video_dataset.py for details.

3. Structure

  • datasets
    • list
      • hmdb51: the train/val lists of HMDB51/Actor-HMDB51
      • hmdb51_sta: the train/val lists of HMDB51_STA
      • ucf101: the train/val lists of UCF101
      • kinetics-400: the train/val lists of kinetics-400
      • diving48: the train/val lists of diving48
  • experiments
    • logs: experiments record in detials, include logs and trained models
    • gradientes:
    • visualization:
    • pretrained_model:
  • src
    • Contrastive
      • data: load data
      • loss: the loss evaluate in this paper
      • model: network architectures
      • scripts: train/eval scripts
      • augmentation: detail implementation of BE augmentation
      • utils
      • feature_extract.py: feature extractor given pretrained model
      • main.py: the main function of pretrain / finetune
      • trainer.py
      • option.py
      • pt.py: BE pretrain
      • ft.py: BE finetune
    • Pretext
      • main.py the main function of pretrain / finetune
      • loss: the loss include classification loss

4. Run

(1). Download dataset lists and pretrained model

A copy of both dataset lists is provided in anonymous. The Kinetics-pretrained models are provided in anonymous.

cd .. && mkdir datasets
mv [path_to_lists] to datasets
mkdir experiments && cd experiments
mkdir pretrained_models && logs
mv [path_to_pretrained_model] to ../experiments/pretrained_model

Download and extract frames of Actor-HMDB51.

wget -c  anonymous
unzip
python utils/data_process/gen_hmdb51_dir.py
python utils/data_process/gen_hmdb51_frames.py

(2). Network Architecture

The network is in the folder src/model/[].py

Method #logits_channel
C3D 512
R2P1D 2048
I3D 1024
R3D 2048

All the logits_channel are feed into a fc layer with 128-D output.

For simply, we divide the source into Contrastive and Pretext, "--method pt_and_ft" means pretrain and finetune in once.

Action Recognition

Random Initialization

For random initialization baseline. Just comment --weights in line 11 of ft.sh. Like below:

#!/usr/bin/env bash
python main.py \
--method ft --arch i3d \
--ft_train_list ../datasets/lists/diving48/diving48_v2_train_no_front.txt \
--ft_val_list ../datasets/lists/diving48/diving48_v2_test_no_front.txt \
--ft_root /data1/DataSet/Diving48/rgb_frames/ \
--ft_dataset diving48 --ft_mode rgb \
--ft_lr 0.001 --ft_lr_steps 10 20 25 30 35 40 --ft_epochs 45 --ft_batch_size 4 \
--ft_data_length 64 --ft_spatial_size 224 --ft_workers 4 --ft_stride 1 --ft_dropout 0.5 \
--ft_print-freq 100 --ft_fixed 0 # \
# --ft_weights ../experiments/kinetics_contrastive.pth

BE(Contrastive)

Kinetics
bash scripts/kinetics/pt_and_ft.sh
UCF101
bash scripts/ucf101/ucf101.sh
Diving48
bash scripts/Diving48/diving48.sh

For Triplet loss optimization and moco baseline, just modify --pt_method

BE (Triplet)

--pt_method be_triplet

BE(Pretext)

bash scripts/hmdb51/i3d_pt_and_ft_flip_cls.sh

or

bash scripts/hmdb51/c3d_pt_and_ft_flip.sh

Notice: More Training Options and ablation study can be find in scripts

Video Retrieve and other visualization

(1). Feature Extractor

As STCR can be easily extend to other video representation task, we offer the scripts to perform feature extract.

python feature_extractor.py

The feature will be saved as a single numpy file in the format [video_nums,features_dim] for further visualization.

(2). Reterival Evaluation

modify line60-line62 in reterival.py.

python reterival.py

Results

Action Recognition

Kinetics Pretrained (I3D)

Method UCF101 HMDB51 Diving48
Random Initialization 57.9 29.6 17.4
MoCo Baseline 70.4 36.3 47.9
BE 86.5 56.2 62.6

Video Retrieve (HMDB51-C3D)

Method @1 @5 @10 @20 @50
BE 10.2 27.6 40.5 56.2 76.6

More Visualization

T-SNE

please refer to utils/visualization/t_SNE_Visualization.py for details.

Confusion_Matrix

please refer to utils/visualization/confusion_matrix.py for details.

Acknowledgement

This work is partly based on UEL and MoCo.

License

The code are released under the CC-BY-NC 4.0 LICENSE.

Owner
Jinpeng Wang
Focus on Biometrics and Video Understanding, Self/Semi Supervised Learning.
Jinpeng Wang
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022