This repository contains all code and data for the Inside Out Visual Place Recognition task

Related tags

Deep LearningIOVPR
Overview

Inside Out Visual Place Recognition

This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognition task and to retrieve the dataset Amsterdam-XXXL. Details are described in our [paper] and [supplementary material]

Dataset

Our dataset Amsterdam-XXXL consists of 3 partitions:

  • Outdoor-Ams: A set of 6.4M GPS annotated street-view images, meant for evaluation purposes but can be used for training as well.
  • Indoor-Ams: 2 sets of 500 indoor images each, that are used as queries during evaluation
  • Ams30k: A small set of GPS annotated street-view images, modelled after Pitts30k, that can be used for training purposes.

Contact [email protected] to get access to the dataset.

Code

This code is based on the code of 'Self-supervising Fine-grained Region Similarities for Large-scale Image Localization (SFRS)' [paper] from https://github.com/yxgeee/OpenIBL.

Main Modifications

  • It is able to process the dataset files for IOVPR.
  • It is able to evaluate on the large scale dataset Outdoor-Ams.
  • It uses Faiss for faster evaluation.

Requirements

  • Follow the installation instructions on https://github.com/yxgeee/OpenIBL/blob/master/docs/INSTALL.md
  • You can use the conda environment iovpr.yml as provided in this repo.
  • Training on Ams30k requires 4 GPUs. Evaluation on Ams30k can be done on 1 GPU. For evaluating on the full Outdoor-Ams, we used a node with 8 GeForce GTX 1080 Ti GPUs. A node with 4 GPUs is not sufficient and will cause memory issues.

Inside Out Data Augmentation

Data processing

In our pipeline we use real and gray layouts to train our models. To create real and gray lay outs we use the ADE20k dataset that can be obtained from http://sceneparsing.csail.mit.edu. This dataset is meant for semantic segmentation and therefore annotated on pixel level, with 150 semantic categories. We select indoor images from the train and validation set. Since 1 of the 150 semantic categories is 'window', we create binary masks of window and non-window pixels of each image. This binary mask is used to create real and gray layouts, as described in our paper. We create three sets of at least 10%, 20% and 30% window pixels.

Inference

During inference with gray layouts, we need a semantic segmentation network. For this, we use the code from https://github.com/CSAILVision/semantic-segmentation-pytorch. We use the pretrained UperNet50 model and finetune the model with the help of the ADE20k dataset on two output classes, window and non-window. The code in this link need some small modifications to finetune it on two classes.

Training and evaluating our models

Details on how to train the models can be found here: https://github.com/yxgeee/OpenIBL/blob/master/docs/REPRODUCTION.md. Only adapt the dataset(=Ams) and scale(=30k).

For evaluation, we use test_faiss.sh.

Ams30k:

./scripts/test_faiss.sh <PATH TO MODEL> ams 30k <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Outdoor-Ams:

./scripts/test_faiss.sh <PATH TO MODEL> ams outdoor <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Note that this uses faiss_evaluators.py instead of the original evaluators.py.

License

'IOVPR' is released under the MIT license.

Citation

If you work on the Inside Out Visual Place Recognition or use our large scale dataset for regular Visual Place Recognition, please cite our paper.

@inproceedings{iovpr2021,
    title={Inside Out Visual Place Recognition},
    author={Sarah Ibrahimi and Nanne van Noord and Tim Alpherts and Marcel Worring},
    booktitle={BMVC}
    year={2021},
}

Acknowledgements

This repo is an extension of SFRS, which is inspired by open-reid, and part of the code is inspired by pytorch-NetVlad.

The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023