This repository contains all code and data for the Inside Out Visual Place Recognition task

Related tags

Deep LearningIOVPR
Overview

Inside Out Visual Place Recognition

This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognition task and to retrieve the dataset Amsterdam-XXXL. Details are described in our [paper] and [supplementary material]

Dataset

Our dataset Amsterdam-XXXL consists of 3 partitions:

  • Outdoor-Ams: A set of 6.4M GPS annotated street-view images, meant for evaluation purposes but can be used for training as well.
  • Indoor-Ams: 2 sets of 500 indoor images each, that are used as queries during evaluation
  • Ams30k: A small set of GPS annotated street-view images, modelled after Pitts30k, that can be used for training purposes.

Contact [email protected] to get access to the dataset.

Code

This code is based on the code of 'Self-supervising Fine-grained Region Similarities for Large-scale Image Localization (SFRS)' [paper] from https://github.com/yxgeee/OpenIBL.

Main Modifications

  • It is able to process the dataset files for IOVPR.
  • It is able to evaluate on the large scale dataset Outdoor-Ams.
  • It uses Faiss for faster evaluation.

Requirements

  • Follow the installation instructions on https://github.com/yxgeee/OpenIBL/blob/master/docs/INSTALL.md
  • You can use the conda environment iovpr.yml as provided in this repo.
  • Training on Ams30k requires 4 GPUs. Evaluation on Ams30k can be done on 1 GPU. For evaluating on the full Outdoor-Ams, we used a node with 8 GeForce GTX 1080 Ti GPUs. A node with 4 GPUs is not sufficient and will cause memory issues.

Inside Out Data Augmentation

Data processing

In our pipeline we use real and gray layouts to train our models. To create real and gray lay outs we use the ADE20k dataset that can be obtained from http://sceneparsing.csail.mit.edu. This dataset is meant for semantic segmentation and therefore annotated on pixel level, with 150 semantic categories. We select indoor images from the train and validation set. Since 1 of the 150 semantic categories is 'window', we create binary masks of window and non-window pixels of each image. This binary mask is used to create real and gray layouts, as described in our paper. We create three sets of at least 10%, 20% and 30% window pixels.

Inference

During inference with gray layouts, we need a semantic segmentation network. For this, we use the code from https://github.com/CSAILVision/semantic-segmentation-pytorch. We use the pretrained UperNet50 model and finetune the model with the help of the ADE20k dataset on two output classes, window and non-window. The code in this link need some small modifications to finetune it on two classes.

Training and evaluating our models

Details on how to train the models can be found here: https://github.com/yxgeee/OpenIBL/blob/master/docs/REPRODUCTION.md. Only adapt the dataset(=Ams) and scale(=30k).

For evaluation, we use test_faiss.sh.

Ams30k:

./scripts/test_faiss.sh <PATH TO MODEL> ams 30k <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Outdoor-Ams:

./scripts/test_faiss.sh <PATH TO MODEL> ams outdoor <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Note that this uses faiss_evaluators.py instead of the original evaluators.py.

License

'IOVPR' is released under the MIT license.

Citation

If you work on the Inside Out Visual Place Recognition or use our large scale dataset for regular Visual Place Recognition, please cite our paper.

@inproceedings{iovpr2021,
    title={Inside Out Visual Place Recognition},
    author={Sarah Ibrahimi and Nanne van Noord and Tim Alpherts and Marcel Worring},
    booktitle={BMVC}
    year={2021},
}

Acknowledgements

This repo is an extension of SFRS, which is inspired by open-reid, and part of the code is inspired by pytorch-NetVlad.

Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Text Summarization - WCN โ€” Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN โ€” Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
๐Ÿค– Project template for your next awesome AI project. ๐Ÿฆพ

๐Ÿค– AI Awesome Project Template ๐Ÿ‘‹ Template author You may want to adjust badge links in a README.md file. ๐Ÿ’Ž Installation with pip Installation is as

Wiktor ลazarski 18 Nov 23, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022