This repository contains all code and data for the Inside Out Visual Place Recognition task

Related tags

Deep LearningIOVPR
Overview

Inside Out Visual Place Recognition

This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognition task and to retrieve the dataset Amsterdam-XXXL. Details are described in our [paper] and [supplementary material]

Dataset

Our dataset Amsterdam-XXXL consists of 3 partitions:

  • Outdoor-Ams: A set of 6.4M GPS annotated street-view images, meant for evaluation purposes but can be used for training as well.
  • Indoor-Ams: 2 sets of 500 indoor images each, that are used as queries during evaluation
  • Ams30k: A small set of GPS annotated street-view images, modelled after Pitts30k, that can be used for training purposes.

Contact [email protected] to get access to the dataset.

Code

This code is based on the code of 'Self-supervising Fine-grained Region Similarities for Large-scale Image Localization (SFRS)' [paper] from https://github.com/yxgeee/OpenIBL.

Main Modifications

  • It is able to process the dataset files for IOVPR.
  • It is able to evaluate on the large scale dataset Outdoor-Ams.
  • It uses Faiss for faster evaluation.

Requirements

  • Follow the installation instructions on https://github.com/yxgeee/OpenIBL/blob/master/docs/INSTALL.md
  • You can use the conda environment iovpr.yml as provided in this repo.
  • Training on Ams30k requires 4 GPUs. Evaluation on Ams30k can be done on 1 GPU. For evaluating on the full Outdoor-Ams, we used a node with 8 GeForce GTX 1080 Ti GPUs. A node with 4 GPUs is not sufficient and will cause memory issues.

Inside Out Data Augmentation

Data processing

In our pipeline we use real and gray layouts to train our models. To create real and gray lay outs we use the ADE20k dataset that can be obtained from http://sceneparsing.csail.mit.edu. This dataset is meant for semantic segmentation and therefore annotated on pixel level, with 150 semantic categories. We select indoor images from the train and validation set. Since 1 of the 150 semantic categories is 'window', we create binary masks of window and non-window pixels of each image. This binary mask is used to create real and gray layouts, as described in our paper. We create three sets of at least 10%, 20% and 30% window pixels.

Inference

During inference with gray layouts, we need a semantic segmentation network. For this, we use the code from https://github.com/CSAILVision/semantic-segmentation-pytorch. We use the pretrained UperNet50 model and finetune the model with the help of the ADE20k dataset on two output classes, window and non-window. The code in this link need some small modifications to finetune it on two classes.

Training and evaluating our models

Details on how to train the models can be found here: https://github.com/yxgeee/OpenIBL/blob/master/docs/REPRODUCTION.md. Only adapt the dataset(=Ams) and scale(=30k).

For evaluation, we use test_faiss.sh.

Ams30k:

./scripts/test_faiss.sh <PATH TO MODEL> ams 30k <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Outdoor-Ams:

./scripts/test_faiss.sh <PATH TO MODEL> ams outdoor <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Note that this uses faiss_evaluators.py instead of the original evaluators.py.

License

'IOVPR' is released under the MIT license.

Citation

If you work on the Inside Out Visual Place Recognition or use our large scale dataset for regular Visual Place Recognition, please cite our paper.

@inproceedings{iovpr2021,
    title={Inside Out Visual Place Recognition},
    author={Sarah Ibrahimi and Nanne van Noord and Tim Alpherts and Marcel Worring},
    booktitle={BMVC}
    year={2021},
}

Acknowledgements

This repo is an extension of SFRS, which is inspired by open-reid, and part of the code is inspired by pytorch-NetVlad.

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN šŸ™ƒ : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
[NeurIPS 2021] ā€œImproving Contrastive Learning on Imbalanced Data via Open-World Samplingā€,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022