A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

Overview

A 2D Visual Localization Framework based on Essential Matrices

This repository provides implementation of our paper accepted at ICRA: To Learn or Not to Learn: Visual Localization from Essential Matrices

Pipeline

To use our code, first download the repository:

git clone [email protected]:GrumpyZhou/visloc-relapose.git

Setup Running Environment

We have tested the code on Linux Ubuntu 16.04.6 under following environments:

Python 3.6 / 3.7
Pytorch 0.4.0 / 1.0 / 1.1 
CUDA 8.0 + CUDNN 8.0v5.1
CUDA 10.0 + CUDNN 10.0v7.5.1.10

The setting we used in the paper is:
Python 3.7 + Pytorch 1.1 + CUDA 10.0 + CUDNN 10.0v7.5.1.10

We recommend to use Anaconda to manage packages. Run following lines to automatically setup a ready environment for our code.

conda env create -f environment.yml  # Notice this one installs latest pytorch version.
conda activte relapose

Otherwise, one can try to download all required packages separately according to their offical documentation.

Prepare Datasets

Our code is flexible for evaluation on various localization datasets. We use Cambridge Landmarks dataset as an example to show how to prepare a dataset:

  1. Create data/ folder
  2. Download original Cambridge Landmarks Dataset and extract it to $CAMBRIDGE_DIR$.
  3. Construct the following folder structure in order to conveniently run all scripts in this repo:
    cd visloc-relapose/
    mkdir data
    mkdir data/datasets_original
    cd data/original_datasets
    ln -s $CAMBRIDGE_DIR$ CambridgeLandmarks
    
  4. Download our pairs for training, validation and testing. About the format of our pairs, check readme.
  5. Place the pairs to corresponding folder under data/datasets_original/CambridgeLandmarks.
  6. Pre-save resized 480 images to speed up data loading time for regression models (Optional, but Recommended)
    cd visloc-relapose/
    python -m utils.datasets.resize_dataset \
    	--base_dir data/datasets_original/CambridgeLandmarks \ 
    	--save_dir=data/datasets_480/CambridgeLandmarks \
    	--resize 480  --copy_txt True 
    
  7. Test your setup by visualizing the data using notebooks/data_loading.ipynb.

7Scenes Datasets

We follow the camera pose label convention of Cambridge Landmarks dataset. Similarly, you can download our pairs for 7Scenes. For other datasets, contact me for information about preprocessing and pair generation.

Feature-based: SIFT + 5-Point Solver

We use the SIFT feature extractor and feature matcher in colmap. One can follow the installation guide to install colmap. We save colmap outputs in database format, see explanation.

Preparing SIFT features

Execute following commands to run SIFT extraction and matching on CambridgeLandmarks:

cd visloc-relapose/
bash prepare_colmap_data.sh  CambridgeLandmarks

Here CambridgeLandmarks is the folder name that is consistent with the dataset folder. So you can also use other dataset names such as 7Scenes if you have prepared the dataset properly in advance.

Evaluate SIFT within our pipeline

Example to run sift+5pt on Cambridge Landmarks:

python -m pipeline.sift_5pt \
        --data_root 'data/datasets_original/' \
        --dataset 'CambridgeLandmarks' \
        --pair_txt 'test_pairs.5nn.300cm50m.vlad.minmax.txt' \
        --cv_ransac_thres 0.5\
        --loc_ransac_thres 5\
        -odir 'output/sift_5pt'\
        -log 'results.dvlad.minmax.txt'

More evaluation examples see: sift_5pt.sh. Check example outputs Visualize SIFT correspondences using notebooks/visualize_sift_matches.ipynb.

Learning-based: Direct Regression via EssNet

The pipeline.relapose_regressor module can be used for both training or testing our regression networks defined under networks/, e.g., EssNet, NCEssNet, RelaPoseNet... We provide training and testing examples in regression.sh. The module allows flexible variations of the setting. For more details about the module options, run python -m pipeline.relapose_regressor -h.

Training

Here we show an example how to train an EssNet model on ShopFacade scene.

python -m pipeline.relapose_regressor \
        --gpu 0 -b 16 --train -val 20 --epoch 200 \
        --data_root 'data/datasets_480' -ds 'CambridgeLandmarks' \
        --incl_sces 'ShopFacade' \
        -rs 480 --crop 448 --normalize \
        --ess_proj --network 'EssNet' --with_ess\
        --pair 'train_pairs.30nn.medium.txt' -vpair 'val_pairs.5nn.medium.txt' \
        -lr 0.0001 -wd 0.000001 \
        --odir  'output/regression_models/example' \
        -vp 9333 -vh 'localhost' -venv 'main' -vwin 'example.shopfacade' 

This command produces outputs are available online here.

Visdom (optional)

As you see in the example above, we use Visdom server to visualize the training process. One can adapt the meters to plot inside utils/common/visdom.py. If you DON'T want to use visdom, just remove the last line -vp 9333 -vh 'localhost' -venv 'main' -vwin 'example.shopfacade'.

Trained models and weights

We release all trained models that are used in our paper. One can download them from pretrained regression models. We also provide some pretrained weights on MegaDepth/ScanNet.

Testing

Here is a piece of code to test the example model above.

python -m pipeline.relapose_regressor \
        --gpu 2 -b 16  --test \
        --data_root 'data/datasets_480' -ds 'CambridgeLandmarks' \
        --incl_sces 'ShopFacade' \
        -rs 480 --crop 448 --normalize\
        --ess_proj --network 'EssNet'\
        --pair 'test_pairs.5nn.300cm50m.vlad.minmax.txt'\
        --resume 'output/regression_models/example/ckpt/checkpoint_140_0.36m_1.97deg.pth' \
        --odir 'output/regression_models/example'

This testing code outputs are shown in test_results.txt. For convenience, we also provide notebooks/eval_regression_models.ipynb to perform evaluation.

Hybrid: Learnable Matching + 5-Point Solver

In this method, the code of the NCNet is taken from the original implementation https://github.com/ignacio-rocco/ncnet. We use their pre-trained model but we only use the weights for neighbourhood consensus(NC-Matching), i.e., the 4d-conv layer weights. For convenience, you can download our parsed version nc_ivd_5ep.pth. The models for feature extractor initialization needs to be downloaded from pretrained regression models in advance, if you want to test them.

Testing example for NC-EssNet(7S)+NCM+5Pt (Paper.Tab2)

In this example, we use NCEssNet trained on 7Scenes for 60 epochs to extract features and use the pre-trained NC Matching layer to get the point matches. Finally the 5 point solver calculates the essential matrix. The model is evaluated on CambridgeLandmarks.

# 
python -m pipeline.ncmatch_5pt \
    --data_root 'data/datasets_original' \
    --dataset 'CambridgeLandmarks' \
    --pair_txt 'test_pairs.5nn.300cm50m.vlad.minmax.txt' \
    --cv_ransac_thres 4.0\
    --loc_ransac_thres 15\
    --feat 'output/regression_models/448_normalize/nc-essnet/7scenes/checkpoint_60_0.04m_1.62deg.pth'\
    --ncn 'output/pretrained_weights/nc_ivd_5ep.pth' \    
    --posfix 'essncn_7sc_60ep+ncn'\
    --match_save_root 'output/ncmatch_5pt/saved_matches'\
    --ncn_thres 0.9 \
    --gpu 2\
    -o 'output/ncmatch_5pt/loc_results/Cambridge/essncn_7sc_60ep+ncn.txt' 

Example outputs is available in essncn_7sc_60ep+ncn.txt. If you don't want to save THE intermediate matches extracted, remove THE option --match_save_root.

Owner
Qunjie Zhou
PhD Candidate at the Dynamic Vision and Learning Group.
Qunjie Zhou
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022