Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

Overview

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer

This repository contains code for our paper titled "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer". [arXiv]

Table of contents

  1. Paper in a nutshell
  2. Installation
  3. Data and models
  4. Repository usage
  5. Links to experiments and results
  6. Citation

Paper in a nutshell

While recent work on multilingual language models has demonstrated their capacity for cross-lingual zero-shot transfer on downstream tasks, there is a lack of consensus in the community as to what shared properties between languages enable such transfer. Analyses involving pairs of natural languages are often inconclusive and contradictory since languages simultaneously differ in many linguistic aspects. In this paper, we perform a large-scale empirical study to isolate the effects of various linguistic properties by measuring zero-shot transfer between four diverse natural languages and their counterparts constructed by modifying aspects such as the script, word order, and syntax. Among other things, our experiments show that the absence of sub-word overlap significantly affects zero-shot transfer when languages differ in their word order, and there is a strong correlation between transfer performance and word embedding alignment between languages (e.g., Spearman's R=0.94 on the task of NLI). Our results call for focus in multilingual models on explicitly improving word embedding alignment between languages rather than relying on its implicit emergence.

Installation instructions

  1. Step 1: Install from the conda .yml file.
conda env create -f installation/multilingual.yml
  1. Step 2: Install transformers in an editable way.
pip install -e transformers/
pip install -r transformers/examples/language-modeling/requirements.txt
pip install -r transformers/examples/token-classification/requirements.txt

Repository usage

For the commands we used to get the reported numbers in the paper, click here. This file contains common instructions used. This file can automatically generate commands for your use case.

Bilingual pre-training

  1. For bilingual pre-training on original and derived language pairs, use the flag --invert_word_order for the Inversion transformation, --permute_words for Permutation and --one_to_one_mapping for Transliteration. Example command for bilingual pre-training for English with Inversion transformation to create the derived language pair.
nohup  python transformers/examples/xla_spawn.py --num_cores 8 transformers/examples/language-modeling/run_mlm_synthetic.py --warmup_steps 10000 --learning_rate 1e-4 --save_steps -1 --max_seq_length 512 --logging_steps 50 --overwrite_output_dir --model_type roberta --config_name config/en/roberta_8/config.json --tokenizer_name config/en/roberta_8/ --do_train --do_eval --max_steps 500000 --per_device_train_batch_size 16 --per_device_eval_batch_size 16 --train_file ../../bucket/pretrain_data/en/train.txt --validation_file ../../bucket/pretrain_data/en/valid.txt --output_dir ../../bucket/model_outputs/en/inverted_order_500K/mlm --run_name inverted_en_500K_mlm --invert_word_order --word_modification add &
  1. For Syntax transformations, the train file used in the following command ([email protected][email protected]) means that it is the concatenation of French corpus with French modified to English verb and noun order ([email protected][email protected]).
nohup python transformers/examples/xla_spawn.py --num_cores 8 transformers/examples/language-modeling/run_mlm_synthetic.py --warmup_steps 10000 --learning_rate 1e-4 --save_steps -1 --max_seq_length 512 --logging_steps 50 --overwrite_output_dir --model_type roberta --config_name config/fr/roberta_8/config.json --tokenizer_name config/fr/roberta_8/ --do_train --do_eval --max_steps 500000 --per_device_train_batch_size 16 --per_device_eval_batch_size 16 --train_file ../../bucket/pretrain_data/fr/synthetic/[email protected][email protected] --validation_file ../../bucket/pretrain_data/fr/synthetic/[email protected][email protected] --output_dir ../../bucket/model_outputs/fr/syntax_modif_en/mlm --run_name fr_syntax_modif_en_500K_mlm &
  1. For composed transformations, apply multiple transformations by using multiple flags, e.g., --one_to_one_mapping --invert_word_order.
nohup python transformers/examples/xla_spawn.py --num_cores 8 transformers/examples/language-modeling/run_mlm_synthetic.py --warmup_steps 10000 --learning_rate 1e-4 --save_steps -1 --max_seq_length 512 --logging_steps 50 --overwrite_output_dir --model_type roberta --config_name config/en/roberta_8/config.json --tokenizer_name config/en/roberta_8/ --do_train --do_eval --max_steps 500000 --per_device_train_batch_size 16 --per_device_eval_batch_size 16 --train_file ../../bucket/pretrain_data/en/train.txt --validation_file ../../bucket/pretrain_data/en/valid.txt --output_dir ../../bucket/model_outputs/en/one_to_one_inverted/mlm --run_name en_one_to_one_inverted --one_to_one_mapping --invert_word_order --word_modification add &
  1. Using different domains for the original and derived language.
nohup python transformers/examples/xla_spawn.py --num_cores 8 transformers/examples/language-modeling/run_mlm_synthetic_transitive.py --warmup_steps 10000 --learning_rate 1e-4 --save_steps -1 --max_seq_length 512 --logging_steps 50 --overwrite_output_dir --model_type roberta --config_name config/en/roberta_8/config.json --tokenizer_name config/en/roberta_8/ --do_train --do_eval --max_steps 500000 --per_device_train_batch_size 16 --per_device_eval_batch_size 16 --train_file ../../bucket/pretrain_data/en/train_split_1.txt --transitive_file ../../bucket/pretrain_data/en/train_split_2.txt --validation_file ../../bucket/pretrain_data/en/valid.txt --output_dir ../../bucket/model_outputs/en/one_to_one_diff_source_100_more_steps/mlm --run_name en_one_to_one_diff_source_100_more_steps --one_to_one_mapping --word_modification add &

Fine-tuning and evaluation

This directory contains scripts used for downstream fine-tuning and evaluation.

  1. Transliteration, Inversion, and Permutation
  2. Syntax
  3. Composed transformations
  4. Using different domains for original and derived languages

Embedding alignment

Use this script to calculate embedding alignment for any model which uses Transliteration as one of the transformations.

Data and models

All the data used for our experiments, hosted on Google Cloud Bucket.

  1. Pre-training data - pretrain_data
  2. Downstream data - supervised_data
  3. Model files - model_outputs

Links to experiments and results

  1. Spreadsheets with run descriptions, commands, and weights and biases link
  2. Spreadsheet with all results
  3. Links to pre-training runs
  4. Link to fine-tuning and analysis

Citation

Please consider citing if you used our paper in your work!

To be updated soon!
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022