Implementation of character based convolutional neural network

Overview

Character Based CNN

MIT contributions welcome Twitter Stars

This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification.

The model architecture comes from this paper: https://arxiv.org/pdf/1509.01626.pdf

Network architecture

There are two variants: a large and a small. You can switch between the two by changing the configuration file.

This architecture has 6 convolutional layers:

Layer Large Feature Small Feature Kernel Pool
1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 N/A
4 1024 256 3 N/A
5 1024 256 3 N/A
6 1024 256 3 3

and 2 fully connected layers:

Layer Output Units Large Output Units Small
7 2048 1024
8 2048 1024
9 Depends on the problem Depends on the problem

Video tutorial

If you're interested in how character CNN work as well as in the demo of this project you can check my youtube video tutorial.

Why you should care about character level CNNs

They have very nice properties:

  • They are quite powerful in text classification (see paper's benchmark) even though they don't have any notion of semantics
  • You don't need to apply any text preprocessing (tokenization, lemmatization, stemming ...) while using them
  • They handle misspelled words and OOV (out-of-vocabulary) tokens
  • They are faster to train compared to recurrent neural networks
  • They are lightweight since they don't require storing a large word embedding matrix. Hence, you can deploy them in production easily

Training a sentiment classifier on french customer reviews

I have tested this model on a set of french labeled customer reviews (of over 3 millions rows). I reported the metrics in TensorboardX.

I got the following results

F1 score Accuracy
train 0.965 0.9366
test 0.945 0.915

Training metrics

Dependencies

  • numpy
  • pandas
  • sklearn
  • PyTorch 0.4.1
  • tensorboardX
  • Tensorflow (to be able to run TensorboardX)

Structure of the code

At the root of the project, you will have:

  • train.py: used for training a model
  • predict.py: used for the testing and inference
  • config.json: a configuration file for storing model parameters (number of filters, neurons)
  • src: a folder that contains:
    • cnn_model.py: the actual CNN model (model initialization and forward method)
    • data_loader.py: the script responsible of passing the data to the training after processing it
    • utils.py: a set of utility functions for text preprocessing (url/hashtag/user_mention removal)

How to use the code

Training

The code currently works only on binary labels (0/1)

Launch train.py with the following arguments:

  • data_path: path of the data. Data should be in csv format with at least a column for text and a column for the label
  • validation_split: the ratio of validation data. default to 0.2
  • label_column: column name of the labels
  • text_column: column name of the texts
  • max_rows: the maximum number of rows to load from the dataset. (I mainly use this for testing to go faster)
  • chunksize: size of the chunks when loading the data using pandas. default to 500000
  • encoding: default to utf-8
  • steps: text preprocessing steps to include on the text like hashtag or url removal
  • group_labels: whether or not to group labels. Default to None.
  • use_sampler: whether or not to use a weighted sampler to overcome class imbalance
  • alphabet: default to abcdefghijklmnopqrstuvwxyz0123456789,;.!?:'"/\|_@#$%^&*~`+-=<>()[]{} (normally you should not modify it)
  • number_of_characters: default 70
  • extra_characters: additional characters that you'd add to the alphabet. For example uppercase letters or accented characters
  • max_length: the maximum length to fix for all the documents. default to 150 but should be adapted to your data
  • epochs: number of epochs
  • batch_size: batch size, default to 128.
  • optimizer: adam or sgd, default to sgd
  • learning_rate: default to 0.01
  • class_weights: whether or not to use class weights in the cross entropy loss
  • focal_loss: whether or not to use the focal loss
  • gamma: gamma parameter of the focal loss. default to 2
  • alpha: alpha parameter of the focal loss. default to 0.25
  • schedule: number of epochs by which the learning rate decreases by half (learning rate scheduling works only for sgd), default to 3. set it to 0 to disable it
  • patience: maximum number of epochs to wait without improvement of the validation loss, default to 3
  • early_stopping: to choose whether or not to early stop the training. default to 0. set to 1 to enable it.
  • checkpoint: to choose to save the model on disk or not. default to 1, set to 0 to disable model checkpoint
  • workers: number of workers in PyTorch DataLoader, default to 1
  • log_path: path of tensorboard log file
  • output: path of the folder where models are saved
  • model_name: prefix name of saved models

Example usage:

python train.py --data_path=/data/tweets.csv --max_rows=200000

Plotting results to TensorboardX

Run this command at the root of the project:

tensorboard --logdir=./logs/ --port=6006

Then go to: http://localhost:6006 (or whatever host you're using)

Prediction

Launch predict.py with the following arguments:

  • model: path of the pre-trained model
  • text: input text
  • steps: list of preprocessing steps, default to lower
  • alphabet: default to 'abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'"\/|_@#$%^&*~`+-=<>()[]{}\n'
  • number_of_characters: default to 70
  • extra_characters: additional characters that you'd add to the alphabet. For example uppercase letters or accented characters
  • max_length: the maximum length to fix for all the documents. default to 150 but should be adapted to your data

Example usage:

python predict.py ./models/pretrained_model.pth --text="I love pizza !" --max_length=150

Download pretrained models

  • Sentiment analysis model on French customer reviews (3M documents): download link

    When using it:

    • set max_length to 300
    • use extra_characters="éàèùâêîôûçëïü" (accented letters)

Contributions - PR are welcome:

Here's a non-exhaustive list of potential future features to add:

  • Adapt the loss for multi-class classification
  • Log training and validation metrics for each epoch to a text file
  • Provide notebook tutorials

License

This project is licensed under the MIT License

Comments
  • Model trained on GPU is unable to predict on CPU

    Model trained on GPU is unable to predict on CPU

    I used some GPUs on the server to speed up training. But after downloading the trained model file to my PC (no GPU equipped) and run the predict.py script. It gives an error message related to cuda_is_available() , seems that the model trained on a GPU cannot predict on only-CPU machines? Is this an expected behavior? If not, any help will be appreciated! Thanks a lot!

    Error Message:

    (ml) C:\Users\lzy71\MyProject\character-based-cnn>python predict.py --model=./model/testmodel.pth --text="I love the pizza" > msg.txt
    C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.container.ModuleList' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes.
      warnings.warn(msg, SourceChangeWarning)
    C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.container.Sequential' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes.
      warnings.warn(msg, SourceChangeWarning)
    C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv1d' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes.
      warnings.warn(msg, SourceChangeWarning)
    Traceback (most recent call last):
      File "predict.py", line 39, in <module>
        prediction = predict(args)
      File "predict.py", line 10, in predict
        model = torch.load(args.model)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 387, in load
        return _load(f, map_location, pickle_module, **pickle_load_args)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 574, in _load
        result = unpickler.load()
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 537, in persistent_load
        deserialized_objects[root_key] = restore_location(obj, location)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 119, in default_restore_location
        result = fn(storage, location)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 95, in _cuda_deserialize
        device = validate_cuda_device(location)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 79, in validate_cuda_device
        raise RuntimeError('Attempting to deserialize object on a CUDA '
    RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location='cpu' to map your storages to the CPU.
    
    opened by desmondlzy 2
  • AttributeError: 'tuple' object has no attribute 'size'

    AttributeError: 'tuple' object has no attribute 'size'

    train is always falling even with such kind of file: """ SentimentText;Sentiment aaa;1 bbb;2 ccc;3 """ Params of running -- just data_path Packages installed: numpy==1.16.1 pandas==0.24.1 Pillow==5.4.1 protobuf==3.6.1 python-dateutil==2.8.0 pytz==2018.9 scikit-learn==0.20.2 scipy==1.2.1 six==1.12.0 sklearn==0.0 tensorboardX==1.6 torch==1.0.1.post2 torchvision==0.2.1 tqdm==4.31.1

    opened by 40min 2
  • Predict error

    Predict error

    Raw output on console.

    python3 predict.py --model=./models/model__epoch_9_maxlen_150_lr_0.00125_loss_0.6931_acc_0.5005_f1_0.4944.pth --text="thisisatest_______" --alphabet=abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_ Traceback (most recent call last): File "/Users/ttran/Desktop/development/python/character-based-cnn/predict.py", line 48, in <module> prediction = predict(args) File "/Users/ttran/Desktop/development/python/character-based-cnn/predict.py", line 11, in predict model = CharacterLevelCNN(args, args.number_of_classes) File "/Users/ttran/Desktop/development/python/character-based-cnn/src/model.py", line 12, in __init__ self.dropout_input = nn.Dropout2d(args.dropout_input) AttributeError: 'Namespace' object has no attribute 'dropout_input'

    What is --number_of_classes argument? I don't have that set in the run command.

    opened by thyngontran 1
  • Data types of columns in the data (CSV)

    Data types of columns in the data (CSV)

    Can you describe how to encode the labels? I get only 1 class label, see output below. They are set as integers (either 0 or 1)

    See output below when I train my model.

    data loaded successfully with 9826 rows and 1 labels Distribution of the classes Counter({0: 9826})

    opened by rkmatousek 1
  • RuntimeError: expected scalar type Long but found Double

    RuntimeError: expected scalar type Long but found Double

    I'm using a dataset I scraped but same structure comments with rating 0-10, using the same commands as provided except group_labels=0

    Traceback (most recent call last):
      File "train.py", line 415, in <module>
        run(args)
      File "train.py", line 297, in run
        training_loss, training_accuracy, train_f1 = train(model,
      File "train.py", line 50, in train
        loss = criterion(predictions, labels)
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 532, in __call__
        result = self.forward(*input, **kwargs)
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\loss.py", line 915, in forward
        return F.cross_entropy(input, target, weight=self.weight,
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\functional.py", line 2021, in cross_entropy
        return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\functional.py", line 1838, in nll_loss
        ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
    RuntimeError: expected scalar type Long but found Double
    
    opened by RyanMills19 0
  • Data loader class issues while mapping

    Data loader class issues while mapping

    I am using my dataset having three labels 0,1,2. While loading the dataset in data_loader class it generates key error. I think the issue is of mapping please guide.

    Traceback (most recent call last):
      File "train.py", line 415, in <module>
        run(args)
      File "train.py", line 219, in run
        texts, labels, number_of_classes, sample_weights = load_data(args)
      File "/content/character-based-cnn/src/data_loader.py", line 55, in load_data
        map(lambda l: {1: 0, 2: 0, 4: 1, 5: 1, 7: 2, 8: 2}[l], labels))
      File "/content/character-based-cnn/src/data_loader.py", line 55, in <lambda>
        map(lambda l: {1: 0, 2: 0, 4: 1, 5: 1, 7: 2, 8: 2}[l], labels))
    KeyError: '1'
    
    opened by bilalbaloch1 1
  • ImportError: No module named cnn_model

    ImportError: No module named cnn_model

    Ubuntu 18.04.3 LTS Python 3.6.9

    Command: python3 predict.py --model "./models/pretrained_model.pth" --text "I love pizza !" --max_length 150

    Output: Traceback (most recent call last): File "predict.py", line 47, in prediction = predict(args) File "predict.py", line 14, in predict state = torch.load(args.model) File "/home/reda/.local/lib/python3.6/site-packages/torch/serialization.py", line 426, in load return _load(f, map_location, pickle_module, **pickle_load_args) File "/home/reda/.local/lib/python3.6/site-packages/torch/serialization.py", line 613, in _load result = unpickler.load() ModuleNotFoundError: No module named 'src.cnn_model'

    opened by redaaa99 0
Releases(model_en_tp_amazon)
Owner
Ahmed BESBES
Data Scientist, Deep learning practitioner, Blogger, Obsessed with neat design and automation
Ahmed BESBES
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Namish Khanna 40 Oct 11, 2022