Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Overview

Note: this repo has been discontinued, please check code for newer version of the paper here

Weight Normalized GAN

Code for the paper "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks".

About the code

Here two versions are provided, one for torch and one for PyTorch.

The code used for the experiments in the paper was in torch and was a bit messy, with hand written backward pass of weight normalized layers and other staff used to test various ideas about GANs that are unrelated to the paper. So we decided to clean up the code and port it to PyTorch (read: autograd). However, we are not able to exactly reproduce the results in the paper with the PyTorch code. So we had to port it back to torch to see the difference.

We did find and fix a mathematical bug in gradient computation (Ouch!) in our implementation of weight normalization, which means that the code used for the paper was incorrect and you might not be able to exactly reproduce the results in the paper with the current code. We need to redo some experiments to make sure everything still works. It seems that now a learning rate of 0.00002 gives very good samples but the speed is not very impressive in the beginning; 0.0001 speeds up training even more than in the paper but give worse samples; 0.00005 balances between the two and also give lower reconstruction loss than in the paper. The example below uses 0.00002.

That being said, we can still find some differences in the samples generated by the two versions of code. We think that the torch version is better, so you are adviced to use that version for training. But you should definitely read the PyTorch version to get a better idea of how our method works. We checked this time that in the torch code, the computed gradients wrt the weight vectors are indeed orthogonal to the weight vectors, so hopefully the difference is not caused by another mathematical bug. It could be a numerical issue since the gradient are not computed in exactly the same way. Or I might have made stupid mistakes as I have been doing machine learning for only half a year. We are still investigating.

Usage

The two versions accept the exact same set of arguments except that there is an additional option to set ID of gpu to use in the torch version.

Before training, you need to prepare the data. For torch you need lmdb.torch for LSUN and cifar.torch for CIFAR-10. Split the dataset into training data and test data with split_data.lua/py. Use --running and --final to set number of test samples for running test and final test respectively.

The LSUN loader creates a cache if there isn't one. It takes some time. The loader for custom dataset from a image folder requires images of each class to be in one subfolder, so if you use say CelebA where there is no classes you need to manually create a dummy class.

To train, run main.lua/py. The only ones you must specify are the --dataset, --dataroot, --save_path and --image_size. By default it trains a vanilla model. Use --norm batch or --norm weight to try different normalizations.

The width and the height of the images are not required to be equal. Nor do they have to be powers of two. They only have to both be even numbers. Image size settings work as follows: if --crop_size is specified or if both --crop_width and --crop_height are specified, the training samples are first cropped to the center. Then, if --width and --height are both specified, the training samples are resized to that size. Otherwise, they are resized so that the aspect ratio is kept and the length of the shorter edge equals --image_size, and then cropped to a square.

If --nlayer is set, that many down/up concolution layers are used. Otherwise such layers are added until the size of the feature map is smaller than 8x8. --nfeature specifies the number of features of the first convolution layer.

Set --load_path to continue a saved training.

To test a trained model, use --final_test. Make sure to also use a larger --test_steps since the default value is for the running test during training. By default it finds the best model in load_path, to use another network, set --net

Read the code to see how other arguments work.

Use plot.lua/py to plot the loss curves. The PyTorch version uses PyGnuplot (it sux).

Example

th main.lua --dataset folder --dataroot /path/to/img_align_celeba --crop_size 160 --image_size 160 --code_size 256 --norm weight --lr 0.00002 --save_path /path/to/save/folder

This should give you something like this in 200,000 iterations: celeba example

Additional notes

The WN model might fail in the first handful of iterations. This happens especially often if the network is deeper (on LSUN). Just restart training. If it get past iteration 5 it should continue to train without trouble. This effect could be reduced by using a smaller learning rate for the first couple of iterations.

Extra stuff

At request, added --ls flag to use least square loss.

Owner
Sitao Xiang
Computer Graphics PhD student at University of Southern California. Twitter: StormRaiser123
Sitao Xiang
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022