Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Overview

Note: this repo has been discontinued, please check code for newer version of the paper here

Weight Normalized GAN

Code for the paper "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks".

About the code

Here two versions are provided, one for torch and one for PyTorch.

The code used for the experiments in the paper was in torch and was a bit messy, with hand written backward pass of weight normalized layers and other staff used to test various ideas about GANs that are unrelated to the paper. So we decided to clean up the code and port it to PyTorch (read: autograd). However, we are not able to exactly reproduce the results in the paper with the PyTorch code. So we had to port it back to torch to see the difference.

We did find and fix a mathematical bug in gradient computation (Ouch!) in our implementation of weight normalization, which means that the code used for the paper was incorrect and you might not be able to exactly reproduce the results in the paper with the current code. We need to redo some experiments to make sure everything still works. It seems that now a learning rate of 0.00002 gives very good samples but the speed is not very impressive in the beginning; 0.0001 speeds up training even more than in the paper but give worse samples; 0.00005 balances between the two and also give lower reconstruction loss than in the paper. The example below uses 0.00002.

That being said, we can still find some differences in the samples generated by the two versions of code. We think that the torch version is better, so you are adviced to use that version for training. But you should definitely read the PyTorch version to get a better idea of how our method works. We checked this time that in the torch code, the computed gradients wrt the weight vectors are indeed orthogonal to the weight vectors, so hopefully the difference is not caused by another mathematical bug. It could be a numerical issue since the gradient are not computed in exactly the same way. Or I might have made stupid mistakes as I have been doing machine learning for only half a year. We are still investigating.

Usage

The two versions accept the exact same set of arguments except that there is an additional option to set ID of gpu to use in the torch version.

Before training, you need to prepare the data. For torch you need lmdb.torch for LSUN and cifar.torch for CIFAR-10. Split the dataset into training data and test data with split_data.lua/py. Use --running and --final to set number of test samples for running test and final test respectively.

The LSUN loader creates a cache if there isn't one. It takes some time. The loader for custom dataset from a image folder requires images of each class to be in one subfolder, so if you use say CelebA where there is no classes you need to manually create a dummy class.

To train, run main.lua/py. The only ones you must specify are the --dataset, --dataroot, --save_path and --image_size. By default it trains a vanilla model. Use --norm batch or --norm weight to try different normalizations.

The width and the height of the images are not required to be equal. Nor do they have to be powers of two. They only have to both be even numbers. Image size settings work as follows: if --crop_size is specified or if both --crop_width and --crop_height are specified, the training samples are first cropped to the center. Then, if --width and --height are both specified, the training samples are resized to that size. Otherwise, they are resized so that the aspect ratio is kept and the length of the shorter edge equals --image_size, and then cropped to a square.

If --nlayer is set, that many down/up concolution layers are used. Otherwise such layers are added until the size of the feature map is smaller than 8x8. --nfeature specifies the number of features of the first convolution layer.

Set --load_path to continue a saved training.

To test a trained model, use --final_test. Make sure to also use a larger --test_steps since the default value is for the running test during training. By default it finds the best model in load_path, to use another network, set --net

Read the code to see how other arguments work.

Use plot.lua/py to plot the loss curves. The PyTorch version uses PyGnuplot (it sux).

Example

th main.lua --dataset folder --dataroot /path/to/img_align_celeba --crop_size 160 --image_size 160 --code_size 256 --norm weight --lr 0.00002 --save_path /path/to/save/folder

This should give you something like this in 200,000 iterations: celeba example

Additional notes

The WN model might fail in the first handful of iterations. This happens especially often if the network is deeper (on LSUN). Just restart training. If it get past iteration 5 it should continue to train without trouble. This effect could be reduced by using a smaller learning rate for the first couple of iterations.

Extra stuff

At request, added --ls flag to use least square loss.

Owner
Sitao Xiang
Computer Graphics PhD student at University of Southern California. Twitter: StormRaiser123
Sitao Xiang
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
πŸ”₯ Cannlytics-powered artificial intelligence πŸ€–

Cannlytics AI πŸ”₯ Cannlytics-powered artificial intelligence πŸ€– πŸ—οΈ Installation πŸƒβ€β™€οΈ Quickstart 🧱 Development 🦾 Automation πŸ’Έ Support πŸ›οΈ License ?

Cannlytics 3 Nov 11, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 πŸ€–

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

ClΓ©ment Pinard 115 Nov 21, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland πŸ”₯

Jiaxi Jiang 282 Jan 02, 2023
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022