[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

Overview

MDCA Calibration

This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration".

Abstract

Deep Neural Networks (DNNs) make overconfident mistakes which can prove to be probematic in deployment in safety critical applications. Calibration is aimed to enhance trust in DNNs. The goal of our proposed Multi-Class Difference in Confidence and Accuracy (MDCA) loss is to align the probability estimates in accordance with accuracy thereby enhancing the trust in DNN decisions. MDCA can be used in case of image classification, image segmentation, and natural language classification tasks.

Teaser

Above image shows comparison of classwise reliability diagrams of Cross-Entropy vs. our proposed method.

Requirements

  • Python 3.8
  • PyTorch 1.8

Directly install using pip

 pip install -r requirements.txt

Training scripts:

Refer to the scripts folder to train for every model and dataset. Overall the command to train looks like below where each argument can be changed accordingly on how to train. Also refer to dataset/__init__.py and models/__init__.py for correct arguments to train with. Argument parser can be found in utils/argparser.py.

Train with cross-entropy:

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss cross_entropy 

Train with FL+MDCA: Also mention the gamma (for Focal Loss) and beta (Weight assigned to MDCA) to train FL+MDCA with

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss FL+MDCA --gamma 1.0 --beta 1.0 

Train with NLL+MDCA:

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss NLL+MDCA --beta 1.0

Post Hoc Calibration:

To do post-hoc calibration, we can use the following command.

lr and patience value is used for Dirichlet calibration. To change range of grid-search in dirichlet calibration, refer to posthoc_calibrate.py.

python posthoc_calibrate.py --dataset cifar10 --model resnet56 --lr 0.001 --patience 5 --checkpoint path/to/your/trained/model

Other Experiments (Dataset Drift, Dataset Imbalance):

experiments folder contains our experiments on PACS, Rotated MNIST and Imbalanced CIFAR10. Please refer to the scripts provided to run them.

Citation

If you find our work useful in your research, please cite the following:

@InProceedings{StitchInTime,
    author    = {R. Hebbalaguppe, J. Prakash, N. Madan, C. Arora},
    title     = {A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022}
}

Contact

For questions about our paper or code, please contact any of the authors (@neelabh17, @bicycleman15, @rhebbalaguppe ) or raise an issue on GitHub.

References:

The code is adapted from the following repositories:

[1] bearpaw/pytorch-classification [2] torrvision/focal_calibration [3] Jonathan-Pearce/calibration_library

Owner
MDCA Calibration
MDCA Calibration
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023