RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

Overview

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

This repository contains the source code for our paper:

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching
Lahav Lipson, Zachary Teed and Jia Deng

@article{lipson2021raft,
  title={{RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching}},
  author={Lipson, Lahav and Teed, Zachary and Deng, Jia},
  journal={arXiv preprint arXiv:2109.07547},
  year={2021}
}

Requirements

The code has been tested with PyTorch 1.7 and Cuda 10.2.

conda env create -f environment.yaml
conda activate raftstereo

Required Data

To evaluate/train RAFT-stereo, you will need to download the required datasets.

To download the ETH3D and Middlebury test datasets for the demos, run

chmod ug+x download_datasets.sh && ./download_datasets.sh

By default stereo_datasets.py will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets folder

├── datasets
    ├── FlyingThings3D
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── Monkaa
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── Driving
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── KITTI
        ├── testing
        ├── training
        ├── devkit
    ├── Middlebury
        ├── MiddEval3
    ├── ETH3D
        ├── lakeside_1l
        ├── ...
        ├── tunnel_3s

Demos

Pretrained models can be downloaded by running

chmod ug+x download_models.sh && ./download_models.sh

or downloaded from google drive

You can demo a trained model on pairs of images. To predict stereo for Middlebury, run

python demo.py --restore_ckpt models/raftstereo-sceneflow.pth

Or for ETH3D:

python demo.py --restore_ckpt models/raftstereo-eth3d.pth -l=datasets/ETH3D/*/im0.png -r=datasets/ETH3D/*/im1.png

Using our fastest model:

python demo.py --restore_ckpt models/raftstereo-realtime.pth  --shared_backbone --n_downsample 3 --n_gru_layers 2 --slow_fast_gru 

To save the disparity values as .npy files, run any of the demos with the --save_numpy flag.

Converting Disparity to Depth

If the camera focal length and camera baseline are known, disparity predictions can be converted to depth values using

Note that the units of the focal length are pixels not millimeters.

Evaluation

To evaluate a trained model on a validation set (e.g. Middlebury), run

python evaluate_stereo.py --restore_ckpt models/raftstereo-middlebury.pth --dataset middlebury_H

Training

Our model is trained on two RTX-6000 GPUs using the following command. Training logs will be written to runs/ which can be visualized using tensorboard.

python train_stereo.py --batch_size 8 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --num_steps 200000 --mixed_precision

To train using significantly less memory, change --n_downsample 2 to --n_downsample 3. This will slightly reduce accuracy.

(Optional) Faster Implementation

We provide a faster CUDA implementation of the correlation volume which works with mixed precision feature maps.

cd sampler && python setup.py install && cd ..

Running demo.py, train_stereo.py or evaluate.py with --corr_implementation reg_cuda together with --mixed_precision will speed up the model without impacting performance.

To significantly decrease memory consumption on high resolution images, use --corr_implementation alt. This implementation is slower than the default, however.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022