RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

Overview

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

This repository contains the source code for our paper:

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching
Lahav Lipson, Zachary Teed and Jia Deng

@article{lipson2021raft,
  title={{RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching}},
  author={Lipson, Lahav and Teed, Zachary and Deng, Jia},
  journal={arXiv preprint arXiv:2109.07547},
  year={2021}
}

Requirements

The code has been tested with PyTorch 1.7 and Cuda 10.2.

conda env create -f environment.yaml
conda activate raftstereo

Required Data

To evaluate/train RAFT-stereo, you will need to download the required datasets.

To download the ETH3D and Middlebury test datasets for the demos, run

chmod ug+x download_datasets.sh && ./download_datasets.sh

By default stereo_datasets.py will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets folder

├── datasets
    ├── FlyingThings3D
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── Monkaa
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── Driving
        ├── frames_cleanpass
        ├── frames_finalpass
        ├── disparity
    ├── KITTI
        ├── testing
        ├── training
        ├── devkit
    ├── Middlebury
        ├── MiddEval3
    ├── ETH3D
        ├── lakeside_1l
        ├── ...
        ├── tunnel_3s

Demos

Pretrained models can be downloaded by running

chmod ug+x download_models.sh && ./download_models.sh

or downloaded from google drive

You can demo a trained model on pairs of images. To predict stereo for Middlebury, run

python demo.py --restore_ckpt models/raftstereo-sceneflow.pth

Or for ETH3D:

python demo.py --restore_ckpt models/raftstereo-eth3d.pth -l=datasets/ETH3D/*/im0.png -r=datasets/ETH3D/*/im1.png

Using our fastest model:

python demo.py --restore_ckpt models/raftstereo-realtime.pth  --shared_backbone --n_downsample 3 --n_gru_layers 2 --slow_fast_gru 

To save the disparity values as .npy files, run any of the demos with the --save_numpy flag.

Converting Disparity to Depth

If the camera focal length and camera baseline are known, disparity predictions can be converted to depth values using

Note that the units of the focal length are pixels not millimeters.

Evaluation

To evaluate a trained model on a validation set (e.g. Middlebury), run

python evaluate_stereo.py --restore_ckpt models/raftstereo-middlebury.pth --dataset middlebury_H

Training

Our model is trained on two RTX-6000 GPUs using the following command. Training logs will be written to runs/ which can be visualized using tensorboard.

python train_stereo.py --batch_size 8 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --num_steps 200000 --mixed_precision

To train using significantly less memory, change --n_downsample 2 to --n_downsample 3. This will slightly reduce accuracy.

(Optional) Faster Implementation

We provide a faster CUDA implementation of the correlation volume which works with mixed precision feature maps.

cd sampler && python setup.py install && cd ..

Running demo.py, train_stereo.py or evaluate.py with --corr_implementation reg_cuda together with --mixed_precision will speed up the model without impacting performance.

To significantly decrease memory consumption on high resolution images, use --corr_implementation alt. This implementation is slower than the default, however.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022