Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Related tags

Deep LearningATVGnet
Overview

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu.

University of Rochester.

Table of Contents

  1. Introduction
  2. Citation
  3. Running
  4. Model
  5. Results
  6. Disclaimer and known issues

Introduction

This repository contains the original models (AT-net, VG-net) described in the paper Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss. The demo video is avaliable at https://youtu.be/eH7h_bDRX2Q. This code can be applied directly in LRW and GRID. The outputs from the model are visualized here: the first one is the synthesized landmark from ATnet, the rest of them are attention, motion map and final results from VGnet.

model model

Citation

If you use any codes, models or the ideas from this repo in your research, please cite:

@inproceedings{chen2019hierarchical,
  title={Hierarchical cross-modal talking face generation with dynamic pixel-wise loss},
  author={Chen, Lele and Maddox, Ross K and Duan, Zhiyao and Xu, Chenliang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={7832--7841},
  year={2019}
}

Running

  1. This code is tested under Python 2.7. The model we provided is trained on LRW. However, it works fine on GRID,VOXCELB and other datasets. You can directly compare this model on other dataset with your own model. We treat this as fair comparison.

  2. Pytorch environment:Pytorch 0.4.1. (conda install pytorch=0.4.1 torchvision cuda90 -c pytorch)

  3. Install requirements.txt (pip install -r requirement.txt)

  4. Download the pretrained ATnet and VGnet weights at google drive. Put the weights under model folder.

  5. Run the demo code: python demo.py

    • -device_ids: gpu id
    • -cuda: using cuda or not
    • -vg_model: pretrained VGnet weight
    • -at_model: pretrained ATnet weight
    • -lstm: use lstm or not
    • -p: input example image
    • -i: input audio file
    • -lstm: use lstm or not
    • -sample_dir: folder to save the outputs
    • ...
  6. Download and unzip the training data from LRW

  7. Preprocess the data (Extract landmark and crop the image by dlib).

  8. Train the ATnet model: python atnet.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_dir: folder to save weights
    • -lstm: use lstm or not
    • -sample_dir: folder to save visualized images during training
    • ...
  9. Test the model: python atnet_test.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_name: pretrained weights
    • -sample_dir: folder to save the outputs
    • -lstm: use lstm or not
    • ...
  10. Train the VGnet: python vgnet.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_dir: folder to save weights
    • -sample_dir: folder to save visualized images during training
    • ...
  11. Test the VGnet: python vgnet_test.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_name: pretrained weights
    • -sample_dir: folder to save the outputs
    • ...

Model

  1. Overall ATVGnet model

  2. Regresssion based discriminator network

    model

Results

  1. Result visualization on different datasets:

    visualization

  2. Reuslt compared with other SOTA methods:

    visualization

  3. The studies on image robustness respective with landmark accuracy:

    visualization

  4. Quantitative results:

    visualization

Disclaimer and known issues

  1. These codes are implmented in Pytorch.
  2. In this paper, we train LRW and GRID seperately.
  3. The model are sensitive to input images. Please use the correct preprocessing code.
  4. I didn't finish the data processing code yet. I will release it soon. But you can try the model and replace with your own image.
  5. If you want to train these models using this version of pytorch without modifications, please notice that:
    • You need at lest 12 GB GPU memory.
    • There might be some other untested issues.
  6. There is another intresting and useful research on audio to landmark genration. Please check it out at https://github.com/eeskimez/Talking-Face-Landmarks-from-Speech.

Todos

  • Release training data

License

MIT

Owner
Lele Chen
I am a Ph.D candidate in University of Rochester supervised by Prof. Chenling Xu.
Lele Chen
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022