Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

Overview

CaFM-pytorch ICCV ACCEPT

Introduction of dataset VSD4K

Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city. Each category is consisted of various video length, including: 15s, 30s, 45s, etc. For a specific category and its specific video length, there are 3 scaling factors: x2, x3 and x4. In each file, there are HR images and its corresponding LR images. 1-n are training images , n - (n + n/10) are test images. (we select test image 1 out of 10). The dataset can be obtained from [https://pan.baidu.com/s/14pcsC7taB4VAa3jvyw1kog] (passward:u1qq) and google drive [https://drive.google.com/drive/folders/17fyX-bFc0IUp6LTIfTYU8R5_Ot79WKXC?usp=sharing].

e.g.:game 15s
dataroot_gt: VSD4K/game/game_15s_1/DIV2K_train_HR/00001.png
dataroot_lqx2: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: VSD4K/game/game_15s_1/DIV2K_train_LR_bicubic/X4/00001_x4.png

Proposed method

Introduction

Our paper "Overfitting the Data: Compact Neural Video Delivery via Content-aware Feature Modulation" has been submitted to 2021 ICCV. we aim to use super resolution network to improve the quality of video delivery recently. The whole precedure is shown below. We devide the whole video into several chunks and apply a joint training framework with Content aware Feature Module(CaFM) to train each chunk simultaneously. With our method, each video chunk only requires less than 1% of original parameters to be streamed, achieving even better SR performance. We conduct extensive experiments across various SR backbones(espcn,srcnn,vdsr,edsr16,edsr32,rcan), video time length(15s-10min), and scaling factors(x2-x4) to demonstrate the advantages of our method. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

Figure 1. The whole procedure of adopting content-aware DNNs for video delivery. A video is first divided into several chunks and the server trains one model for each chunk. Then the server delivers LR video chunks and models to client. The client runs the inference to super-resolve the LR chunks and obtain the SR video.

Quantitative results

We show our quantitative results in the table below. For simplicity, we only demonstrate the results on game and vlog datasets. We compare our method M{1-n} with M0 and S{1-n}. The experiments are conducted on EDSR.

  • M0: a EDSR without CaFM module, train on whole video.
  • Si: a EDSR without a CaFM module, train on one specific chunk i.
  • M{1-n}ours: a EDSR with n CaFM modules, train on n chunks simultaneously.
Dataset Game15s Game30s Game45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 42.24 35.88 33.44 41.84 35.54 33.05 42.11 35.75 33.33
S{1-n} 42.82 36.42 34.00 43.07 36.73 34.17 43.22 36.72 34.32
M{1-n} Ours 43.13 37.04 34.47 43.37 37.12 34.58 43.46 37.31 34.79
Dataset Vlog15s Vlog30s Vlog45s
Scale x2 x3 x4 x2 x3 x4 x2 x3 x4
M0 48.87 44.51 42.58 47.79 43.38 41.24 47.98 43.58 41.53
S{1-n} 49.10 44.80 42.83 48.20 43.68 41.55 48.48 44.12 42.12
M{1-n} Ours 49.30 45.03 43.11 48.55 44.15 42.16 48.61 44.24 42.39

Quatitative results

We show the quatitative results in the figure below.

  • bicubic: SR images are obtained by bicubic
  • H.264/H.265: use the default setting of FFmpeg to generate the H.264 and H.265 videos

Dependencies

  • Python >= 3.6
  • Torch >= 1.0.0
  • opencv-python
  • numpy
  • skimage
  • imageio
  • matplotlib

Quickstart

M0 demotes the model without Cafm module which is trained on the whole dataset. S{1-n} denotes n models that trained on n chunks of video. M{1-n} demotes one model along with n Cafm modules that trained on the whole dataset. M{1-n} is our proposed method.

How to set data_range

n is the total frames in a video. We select one test image out of 10 training images. Thus, in VSD4K, 1-n is its training dataset, n-(n+/10) is the test dataset. Generally, we set 5s as the length of one chunk. Hence, 15s consists 3 chunks, 30s consists 6 chunks, etc.

Video length(train images + test images) chunks M0/M{1-n} S1 S2 S3 S4 S5 S6 S7 S8 S9
15s(450+45) 3 1-450/451-495 1-150/451-465 151-300/466-480 301-450/481-495 - - - - - -
30s(900+95) 6 1-900/901-990 1-150/901-915 151-300/916-930 301-450/931-945 451-600/946-960 601-750/961-975 751-900/976-990 - - -
45s(1350+135) 9 1-1350/1351-1485 1-150/1351-1365 151-300/1366-1380 301-450/1381-1395 451-600/1396-1410 601-750/1411-1425 751-900/1426-1440 901-1050/1441-1455 1051-1200/1456-1470 1201-1350/1471-1485

Train

For simplicity, we only demonstrate how to train 'game_15s' by our method.

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

You can apply our method on your own images. Place your HR images under YOURS/DIV2K_train_HR/, with the name start from 00001.png. Place your corresponding LR images under YOURS/DIV2K_train_LR_bicubic/X2, with the name start from 00001_x2.png.

e.g.:
dataroot_gt: YOURS/DIV2K_train_HR/00001.png
dataroot_lqx2: YOURS/DIV2K_train_LR_bicubic/X2/00001_x2.png
dataroot_lqx3: YOURS/DIV2K_train_LR_bicubic/X3/00001_x3.png
dataroot_lqx4: YOURS/DIV2K_train_LR_bicubic/X4/00001_x4.png
  • The running command is like:
CUDA_VISIBLE_DEVICES=3 python main.py --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --scale {scale factor} --patch_size {patch size} --save {name of the trained model} --reset --data_train DIV2K --data_test DIV2K --data_range {train_range}/{test_range} --cafm --dir_data {path of data} --use_cafm --batch_size {batch size} --epoch {epoch} --decay {decay} --segnum {numbers of chunk} --length
  • For example:
e.g. 
CUDA_VISIBLE_DEVICES=3 python main.py --model EDSR --scale 2 --patch_size 48 --save trainm1_n --reset --data_train DIV2K --data_test DIV2K --data_range 1-450/451-495 --cafm --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --batch_size 64 --epoch 500 --decay 300 --segnum 3 --is15s

Test

For simplicity, we only demonstrate how to run 'game' category of 15s. All pretrain models(15s, 30s, 45s) of game category can be found in this link [https://pan.baidu.com/s/1P18FULL7CIK1FAa2xW56AA] (passward:bjv1) and google drive link [https://drive.google.com/drive/folders/1_N64A75iwgbweDBk7dUUDX0SJffnK5-l?usp=sharing].

  • For M{1-n} model:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale {scale factor} --model {EDSR/ESPCN/VDSRR/SRCNN/RCAN} --test_only --pre_train {path to pretrained model} --data_range {train_range} --{is15s/is30s/is45s} --cafm  --dir_data {path of data} --use_cafm --segnum 3
e.g.:
CUDA_VISIBLE_DEVICES=3 python main.py --data_test DIV2K --scale 4 --model EDSR --test_only --pre_train /home/CaFM-pytorch/experiment/edsr_x2_p48_game_15s_1_seg1-3_batch64_k1_g64/model/model_best.pt --data_range 1-150 --is15s --cafm  --dir_data /home/datasets/VSD4K/game/game_15s_1 --use_cafm --segnum 3

Additional

We also demonstrate our method in vimeo dataset and HEVC test sequence. These datasets and all trained models will be released as soon as possible. By the way, we add SEFCNN.py into our backbone list which is suggested by reviewer.The code will be updated regularly.

Acknowledgment

AdaFM proposed a closely related method for continual modulation of restoration levels. While they aimed to handle arbitrary restoration levels between a start and an end level, our goal is to compress the models of different chunks for video delivery. The reader is encouraged to review their work for more details. Please also consider to cite AdaFM if you use the code. [https://github.com/hejingwenhejingwen/AdaFM]

Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022