PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Related tags

Deep LearningSAQ
Overview

Sharpness-aware Quantization for Deep Neural Networks

License

Recent Update

2021.11.23: We release the source code of SAQ.

Setup the environments

  1. Clone the repository locally:
git clone https://github.com/zhuang-group/SAQ
  1. Install pytorch 1.8+, tensorboard and prettytable
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install tensorboard
pip install prettytable

Data preparation

ImageNet

  1. Download the ImageNet 2012 dataset from here, and prepare the dataset based on this script.

  2. Change the dataset path in link_imagenet.py and link the ImageNet-100 by

python link_imagenet.py

CIFAR-100

Download the CIFAR-100 dataset from here.

After downloading ImageNet and CIFAR-100, the file structure should look like:

dataset
├── imagenet
    ├── train
    │   ├── class1
    │   │   ├── img1.jpeg
    │   │   ├── img2.jpeg
    │   │   └── ...
    │   ├── class2
    │   │   ├── img3.jpeg
    │   │   └── ...
    │   └── ...
    └── val
        ├── class1
        │   ├── img4.jpeg
        │   ├── img5.jpeg
        │   └── ...
        ├── class2
        │   ├── img6.jpeg
        │   └── ...
        └── ...
├── cifar100
    ├── cifar-100-python
    │   ├── meta
    │   ├── test
    │   ├── train
    │   └── ...
    └── ...

Training

Fixed-precision quantization

  1. Download the pre-trained full-precision models from the model zoo.

  2. Train low-precision models.

To train low-precision ResNet-20 on CIFAR-100, run:

sh script/train_qsam_cifar_r20.sh

To train low-precision ResNet-18 on ImageNet, run:

sh script/train_qsam_imagenet_r18.sh

Mixed-precision quantization

  1. Download the pre-trained full-precision models from the model zoo.

  2. Train the configuration generator.

To train the configuration generator of ResNet-20 on CIFAR-100, run:

sh script/train_generator_cifar_r20.sh

To train the configuration generator on ImageNet, run:

sh script/train_generator_imagenet_r18.sh
  1. After training the configuration generator, run following commands to fine-tune the resulting models with the obtained bitwidth configurations on CIFAR-100 and ImageNet.
sh script/finetune_cifar_r20.sh
sh script/finetune_imagenet_r18.sh

Results on CIFAR-100

Network Method Bitwidth BOPs (M) Top-1 Acc. (%) Top-5 Acc. (%)
ResNet-20 SAQ 4 674.6 68.7 91.2
ResNet-20 SAMQ MP 659.3 68.7 91.2
ResNet-20 SAQ 3 392.1 67.7 90.8
ResNet-20 SAMQ MP 374.4 68.6 91.2
MobileNetV2 SAQ 4 1508.9 75.6 93.7
MobileNetV2 SAMQ MP 1482.1 75.5 93.6
MobileNetV2 SAQ 3 877.1 74.4 93.2
MobileNetV2 SAMQ MP 869.5 75.5 93.7

Results on ImageNet

Network Method Bitwidth BOPs (G) Top-1 Acc. (%) Top-5 Acc. (%)
ResNet-18 SAQ 4 34.7 71.3 90.0
ResNet-18 SAMQ MP 33.7 71.4 89.9
ResNet-18 SAQ 2 14.4 67.1 87.3
MobileNetV2 SAQ 4 5.3 70.2 89.4
MobileNetV2 SAMQ MP 5.3 70.3 89.4

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

This repository has adopted codes from SAM, ASAM and ESAM, we thank the authors for their open-sourced code.

You might also like...
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Comments
  • Quantize_first_last_layer

    Quantize_first_last_layer

    Hi! I noticed that in your code, you set bits_weights=8 and bits_activations=32 for first layer as default, it's not what is claimed in your paper " For the first and last layers of all quantized models, we quantize both weights and activations to 8-bit. " And I see an accuracy drop if I adjust the bits_activations to 8 for the first layer, could u please explain what is the reason? Thanks!

    opened by mmmiiinnnggg 0
  • 代码问题请求帮助

    代码问题请求帮助

    你好,带佬的代码写的很好,有部分代码不太懂,想请教一下, parser.add_argument( "--arch_bits", type=lambda s: [float(item) for item in s.split(",")] if len(s) != 0 else "", default=" ", help="bits configuration of each layer",

    if len(args.arch_bits) != 0: if args.wa_same_bit: set_wae_bits(model, args.arch_bits) elif args.search_w_bit: set_w_bits(model, args.arch_bits) else: set_bits(model, args.arch_bits) show_bits(model) logger.info("Set arch bits to: {}".format(args.arch_bits)) logger.info(model) 这个arch_bits主要是做什么的呢,卡在这里有段时间了

    opened by LKAMING97 0
Releases(v0.1.1)
Owner
Zhuang AI Group
Zhuang AI Group
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022