TrackFormer: Multi-Object Tracking with Transformers

Overview

TrackFormer: Multi-Object Tracking with Transformers

This repository provides the official implementation of the TrackFormer: Multi-Object Tracking with Transformers paper by Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe and Christoph Feichtenhofer. The codebase builds upon DETR, Deformable DETR and Tracktor.

As the paper is still under submission this repository will continuously be updated and might at times not reflect the current state of the arXiv paper.

MOT17-03-SDP MOTS20-07

Abstract

The challenging task of multi-object tracking (MOT) requires simultaneous reasoning about track initialization, identity, and spatiotemporal trajectories. We formulate this task as a frame-to-frame set prediction problem and introduce TrackFormer, an end-to-end MOT approach based on an encoder-decoder Transformer architecture. Our model achieves data association between frames via attention by evolving a set of track predictions through a video sequence. The Transformer decoder initializes new tracks from static object queries and autoregressively follows existing tracks in space and time with the new concept of identity preserving track queries. Both decoder query types benefit from self- and encoder-decoder attention on global frame-level features, thereby omitting any additional graph optimization and matching or modeling of motion and appearance. TrackFormer represents a new tracking-by-attention paradigm and yields state-of-the-art performance on the task of multi-object tracking (MOT17) and segmentation (MOTS20).

TrackFormer casts multi-object tracking as a set prediction problem performing joint detection and tracking-by-attention. The architecture consists of a CNN for image feature extraction, a Transformer encoder for image feature encoding and a Transformer decoder which applies self- and encoder-decoder attention to produce output embeddings with bounding box and class information.

Installation

We refer to our docs/INSTALL.md for detailed installation instructions.

Train TrackFormer

We refer to our docs/TRAIN.md for detailed training instructions.

Evaluate TrackFormer

In order to evaluate TrackFormer on a multi-object tracking dataset, we provide the src/track.py script which supports several datasets and splits interchangle via the dataset_name argument (See src/datasets/tracking/factory.py for an overview of all datasets.) The default tracking configuration is specified in cfgs/track.yaml. To facilitate the reproducibility of our results, we provide evaluation metrics for both the train and test set.

MOT17

Private detections

python src/track.py reid
MOT17 MOTA IDF1 MT ML FP FN ID SW.
Train 68.1 67.6 816 207 33549 71937 1935
Test 65.0 63.9 1074 324 70443 123552 3528

Public detections (DPM, FRCNN, SDP)

python src/track.py with \
    reid \
    public_detections=min_iou_0_5 \
    obj_detect_checkpoint_file=models/mots20_train_masks/checkpoint.pth
MOT17 MOTA IDF1 MT ML FP FN ID SW.
Train 67.2 66.9 663 294 14640 94122 1866
Test 62.5 60.7 702 632 32828 174921 3917

MOTS20

python src/track.py with \
    dataset_name=MOTS20-ALL \
    obj_detect_checkpoint_file=models/mots20_train_masks/checkpoint.pth

Our tracking script only applies MOT17 metrics evaluation but outputs MOTS20 mask prediction files. To evaluate these download the official MOTChallengeEvalKit.

MOTS20 sMOTSA IDF1 FP FN IDs
Train -- -- -- -- --
Test 54.9 63.6 2233 7195 278

Demo

To facilitate the application of TrackFormer, we provide a demo interface which allows for a quick processing of a given video sequence.

ffmpeg -i data/snakeboard/snakeboard.mp4 -vf fps=30 data/snakeboard/%06d.png

python src/track.py with \
    dataset_name=DEMO \
    data_root_dir=data/snakeboard \
    output_dir=data/snakeboard \
    write_images=pretty
Snakeboard demo

Publication

If you use this software in your research, please cite our publication:

@InProceedings{meinhardt2021trackformer,
    title={TrackFormer: Multi-Object Tracking with Transformers},
    author={Tim Meinhardt and Alexander Kirillov and Laura Leal-Taixe and Christoph Feichtenhofer},
    year={2021},
    eprint={2101.02702},
    archivePrefix={arXiv},
}
Owner
Tim Meinhardt
Ph.D. candidate at the Dynamic Vision and Learning Group, TU Munich
Tim Meinhardt
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022