PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

Related tags

Deep LearningMAE-priv
Overview

MAE for Self-supervised ViT

Introduction

This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

This repo is mainly based on moco-v3, pytorch-image-models and BEiT

TODO

  • visualization of reconstruction image
  • linear prob
  • more results
  • transfer learning
  • ...

Main Results

The following results are based on ImageNet-1k self-supervised pre-training, followed by ImageNet-1k supervised training for linear evaluation or end-to-end fine-tuning.

Vit-Base

pretrain
epochs
with
pixel-norm
linear
acc
fine-tuning
acc
100 False -- 75.58 [1]
100 True -- 77.19
800 True -- --

On 8 NVIDIA GeForce RTX 3090 GPUs, pretrain for 100 epochs needs about 9 hours, 4096 batch size needs about 24 GB GPU memory.

[1]. fine-tuning for 50 epochs;

Vit-Large

pretrain
epochs
with
pixel-norm
linear
acc
fine-tuning
acc
100 False -- --
100 True -- --

On 8 NVIDIA A40 GPUs, pretrain for 100 epochs needs about 34 hours, 4096 batch size needs about xx GB GPU memory.

Usage: Preparation

The code has been tested with CUDA 11.4, PyTorch 1.8.2.

Notes:

  1. The batch size specified by -b is the total batch size across all GPUs from all nodes.
  2. The learning rate specified by --lr is the base lr (corresponding to 256 batch-size), and is adjusted by the linear lr scaling rule.
  3. In this repo, only multi-gpu, DistributedDataParallel training is supported; single-gpu or DataParallel training is not supported. This code is improved to better suit the multi-node setting, and by default uses automatic mixed-precision for pre-training.
  4. Only pretraining and finetuning have been tested.

Usage: Self-supervised Pre-Training

Below is examples for MAE pre-training.

ViT-Base with 1-node (8-GPU, NVIDIA GeForce RTX 3090) training, batch 4096

python main_mae.py \
  -c cfgs/ViT-B16_ImageNet1K_pretrain.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

or

sh train_mae.sh

ViT-Large with 1-node (8-GPU, NVIDIA A40) pre-training, batch 2048

python main_mae.py \
  -c cfgs/ViT-L16_ImageNet1K_pretrain.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

Usage: End-to-End Fine-tuning ViT

Below is examples for MAE fine-tuning.

ViT-Base with 1-node (8-GPU, NVIDIA GeForce RTX 3090) training, batch 1024

python main_fintune.py \
  -c cfgs/ViT-B16_ImageNet1K_finetune.yaml \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

ViT-Large with 2-node (16-GPU, 8 NVIDIA GeForce RTX 3090 + 8 NVIDIA A40) training, batch 512

python main_fintune.py \
  -c cfgs/ViT-B16_ImageNet1K_finetune.yaml \
  --multiprocessing-distributed --world-size 2 --rank 0 \
  [your imagenet-folder with train and val folders]

On another node, run the same command with --rank 1.

Note:

  1. We use --resume rather than --finetune in the DeiT repo, as its --finetune option trains under eval mode. When loading the pre-trained model, revise model_without_ddp.load_state_dict(checkpoint['model']) with strict=False.

[TODO] Usage: Linear Classification

By default, we use momentum-SGD and a batch size of 1024 for linear classification on frozen features/weights. This can be done with a single 8-GPU node.

python main_lincls.py \
  -a [architecture] --lr [learning rate] \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --pretrained [your checkpoint path]/[your checkpoint file].pth.tar \
  [your imagenet-folder with train and val folders]

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

If you use the code of this repo, please cite the original papre and this repo:

@Article{he2021mae,
  author  = {Kaiming He* and Xinlei Chen* and Saining Xie and Yanghao Li and Piotr Dolla ́r and Ross Girshick},
  title   = {Masked Autoencoders Are Scalable Vision Learners},
  journal = {arXiv preprint arXiv:2111.06377},
  year    = {2021},
}
@misc{yang2021maepriv,
  author       = {Lu Yang* and Pu Cao* and Yang Nie and Qing Song},
  title        = {MAE-priv},
  howpublished = {\url{https://github.com/BUPT-PRIV/MAE-priv}},
  year         = {2021},
}
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022