LyaNet: A Lyapunov Framework for Training Neural ODEs

Overview

LyaNet: A Lyapunov Framework for Training Neural ODEs

Provide the model type--config-name to train and test models configured as those shown in the paper.

Classification Training

For the code assumes the project root is the current directory.

Example commands:

python sl_pipeline.py --config-name classical +dataset=MNIST

Tensorboards are saved to run_data/tensorboards and can be viewed by running:

tensorboard --logdir ./run_data/tensorboards --reload_multifile True

Only the model with the best validation error is saved. To quickly verify the the test error of this model, run the adversarial robustness script. It prints the nominal test error before performing the attack.

Adversarial Robustness

Assuming the current directory is robustness. Notice that the model file name will be different depending on the dataset and model combination you have run. The path provided should provide an idea of the directory structure where models are stored.

These scripts will print the testing error, followed by the testing error with and adversarial attack. Notice adversarial testing requires significantly more resources.

L2 Adversarial robustness experiments

PYTHONPATH=../ python untargeted_robustness.py --config-name classical norm="2" \
+dataset=MNIST \
"+model_file='../run_data/tensorboards/d.MNIST_m.ClassicalModule(RESNET18)_b.128_lr.0.01_wd.0.0001_mepoch120._sd0/default/version_0/checkpoints/epoch=7-step=3375.ckpt'"

L Infinity Adversarial robustness experiments

PYTHONPATH=../ python untargeted_robustness.py --config-name classical \
norm="inf"  +dataset=MNIST \
"+model_file='../run_data/tensorboards/d.MNIST_m.ClassicalModule(RESNET18)_b.128_lr.0.01_wd.0.0001_mepoch120._sd0/default/version_0/checkpoints/epoch=7-step=3375.ckpt'"

Datasets supported

  • MNIST
  • FashionMNIST
  • CIFAR10
  • CIFAR100

Models Supported

  • anode : Data-controlled dynamics with ResNet18 Component trained through solution differentiation
  • classical: ResNet18
  • lyapunov: Data-controlled dynamics with ResNet18 Component trained with LyaNet
  • continuous_net: ContinuousNet from [1] trained through solution differentiation
  • continuous_net_lyapunov: ContinuousNet from [1] trained with LyaNet

References

  1. Continuous-in-Depth Neural Networks Code
  2. Learning by Turning: Neural Architecture Aware Optimisation Code
Owner
Ivan Dario Jimenez Rodriguez
Ivan Dario Jimenez Rodriguez
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., GĂĽney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022