LyaNet: A Lyapunov Framework for Training Neural ODEs

Overview

LyaNet: A Lyapunov Framework for Training Neural ODEs

Provide the model type--config-name to train and test models configured as those shown in the paper.

Classification Training

For the code assumes the project root is the current directory.

Example commands:

python sl_pipeline.py --config-name classical +dataset=MNIST

Tensorboards are saved to run_data/tensorboards and can be viewed by running:

tensorboard --logdir ./run_data/tensorboards --reload_multifile True

Only the model with the best validation error is saved. To quickly verify the the test error of this model, run the adversarial robustness script. It prints the nominal test error before performing the attack.

Adversarial Robustness

Assuming the current directory is robustness. Notice that the model file name will be different depending on the dataset and model combination you have run. The path provided should provide an idea of the directory structure where models are stored.

These scripts will print the testing error, followed by the testing error with and adversarial attack. Notice adversarial testing requires significantly more resources.

L2 Adversarial robustness experiments

PYTHONPATH=../ python untargeted_robustness.py --config-name classical norm="2" \
+dataset=MNIST \
"+model_file='../run_data/tensorboards/d.MNIST_m.ClassicalModule(RESNET18)_b.128_lr.0.01_wd.0.0001_mepoch120._sd0/default/version_0/checkpoints/epoch=7-step=3375.ckpt'"

L Infinity Adversarial robustness experiments

PYTHONPATH=../ python untargeted_robustness.py --config-name classical \
norm="inf"  +dataset=MNIST \
"+model_file='../run_data/tensorboards/d.MNIST_m.ClassicalModule(RESNET18)_b.128_lr.0.01_wd.0.0001_mepoch120._sd0/default/version_0/checkpoints/epoch=7-step=3375.ckpt'"

Datasets supported

  • MNIST
  • FashionMNIST
  • CIFAR10
  • CIFAR100

Models Supported

  • anode : Data-controlled dynamics with ResNet18 Component trained through solution differentiation
  • classical: ResNet18
  • lyapunov: Data-controlled dynamics with ResNet18 Component trained with LyaNet
  • continuous_net: ContinuousNet from [1] trained through solution differentiation
  • continuous_net_lyapunov: ContinuousNet from [1] trained with LyaNet

References

  1. Continuous-in-Depth Neural Networks Code
  2. Learning by Turning: Neural Architecture Aware Optimisation Code
Owner
Ivan Dario Jimenez Rodriguez
Ivan Dario Jimenez Rodriguez
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022