LyaNet: A Lyapunov Framework for Training Neural ODEs

Overview

LyaNet: A Lyapunov Framework for Training Neural ODEs

Provide the model type--config-name to train and test models configured as those shown in the paper.

Classification Training

For the code assumes the project root is the current directory.

Example commands:

python sl_pipeline.py --config-name classical +dataset=MNIST

Tensorboards are saved to run_data/tensorboards and can be viewed by running:

tensorboard --logdir ./run_data/tensorboards --reload_multifile True

Only the model with the best validation error is saved. To quickly verify the the test error of this model, run the adversarial robustness script. It prints the nominal test error before performing the attack.

Adversarial Robustness

Assuming the current directory is robustness. Notice that the model file name will be different depending on the dataset and model combination you have run. The path provided should provide an idea of the directory structure where models are stored.

These scripts will print the testing error, followed by the testing error with and adversarial attack. Notice adversarial testing requires significantly more resources.

L2 Adversarial robustness experiments

PYTHONPATH=../ python untargeted_robustness.py --config-name classical norm="2" \
+dataset=MNIST \
"+model_file='../run_data/tensorboards/d.MNIST_m.ClassicalModule(RESNET18)_b.128_lr.0.01_wd.0.0001_mepoch120._sd0/default/version_0/checkpoints/epoch=7-step=3375.ckpt'"

L Infinity Adversarial robustness experiments

PYTHONPATH=../ python untargeted_robustness.py --config-name classical \
norm="inf"  +dataset=MNIST \
"+model_file='../run_data/tensorboards/d.MNIST_m.ClassicalModule(RESNET18)_b.128_lr.0.01_wd.0.0001_mepoch120._sd0/default/version_0/checkpoints/epoch=7-step=3375.ckpt'"

Datasets supported

  • MNIST
  • FashionMNIST
  • CIFAR10
  • CIFAR100

Models Supported

  • anode : Data-controlled dynamics with ResNet18 Component trained through solution differentiation
  • classical: ResNet18
  • lyapunov: Data-controlled dynamics with ResNet18 Component trained with LyaNet
  • continuous_net: ContinuousNet from [1] trained through solution differentiation
  • continuous_net_lyapunov: ContinuousNet from [1] trained with LyaNet

References

  1. Continuous-in-Depth Neural Networks Code
  2. Learning by Turning: Neural Architecture Aware Optimisation Code
Owner
Ivan Dario Jimenez Rodriguez
Ivan Dario Jimenez Rodriguez
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022