Open-source Monocular Python HawkEye for Tennis

Overview

Tennis Tracking 🎾

Objectives

  • Track the ball
  • Detect court lines
  • Detect the players

To track the ball we used TrackNet - deep learning network for tracking high-speed objects. For players detection yolov3 was used.

Example using sample videos

Input Output
input_img1 output_img1
input_img2 output_img2
input_img3 output_img3

How to run

This project requires compatible GPU to install tensorflow, you can run it on your local machine in case you have one or use Google Colaboratory with Runtime Type changed to GPU.

  1. Clone this repository
  2. git clone https://github.com/ArtLabss/tennis-tracking
    
  3. Download yolov3 weights (237 MB) from here and add it to your Yolov3 folder.
  4. Install the requirements using pip
  5. pip install -r requirements.txt
  6. Run the following command in the command line
  7. python predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
  8. If you are using Google Colab upload all the files to Google Drive
  9. Create a Google Colaboratory Notebook in the same directory as predict_video.py and connect it to Google drive
  10. from google.colab import drive
    drive.mount('/content/drive')
  11. Change the working directory to the one where the Colab Notebook and predict_video.py are. In my case,
  12. import os 
    os.chdir('MyDrive/Colab Notebooks/tennis-tracking')
  13. Install the requirements
  14. !pip install -r requirements.txt
  15. Inside the notebook run predict_video.py
  16.  !python3 predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
    

    After the compilation is completed, a new video will be created in VideoOutput folder if --minimap was set 0, if --minimap=1 three videos will be created: video of the game, video of minimap and a combined video of both

    P.S. If you stumble upon an error or have any questions feel free to open a new Issue

What's new?

  • Court line detection improved
  • Player detection improved
  • The algorithm now works practically with any court colors
  • Faster algorithm
  • Dynamic Mini-Map with players and ball added, to activate use argument --minimap
--minimap=0 --minimap=1
input_img1 output_img1

Further Developments

  • Improve line detection of the court and remove overlapping lines
  • Algorithm fails to detect players when the court colors aren't similar to the sample video
  • Don't detect the ballboys/ballgirls
  • Don't contour the banners
  • Detect players on videos with different angles
  • Find the coordinates of the ball touching the court and display them
  • Code Optimization
  • Dynamic court mini-map with players and the ball

Current Drawbacks

  • Slow algorithms (to process 15 seconds video (6.1 Mb) it takes 28 minutes 16 minutes)
  • Algorithm works only on official match videos

References

- Yu-Chuan Huang, "TrackNet: Tennis Ball Tracking from Broadcast Video by Deep Learning Networks," Master Thesis, advised by Tsì-Uí İk and Guan-Hua Huang, National Chiao Tung University, Taiwan, April 2018. - Yu-Chuan Huang, I-No Liao, Ching-Hsuan Chen, Tsì-Uí İk, and Wen-Chih Peng, "TrackNet: A Deep Learning Network for Tracking High-speed and Tiny Objects in Sports Applications," in the IEEE International Workshop of Content-Aware Video Analysis (CAVA 2019) in conjunction with the 16th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS 2019), 18-21 September 2019, Taipei, Taiwan. - Joseph Redmon, Ali Farhadi, "YOLOv3: An Incremental Improvement", University of Washington, https://arxiv.org/pdf/1804.02767.pdf
Owner
ArtLabs
ArtLabs
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022