Transfer Learning for Pose Estimation of Illustrated Characters

Overview

bizarre-pose-estimator

Transfer Learning for Pose Estimation of Illustrated Characters
Shuhong Chen *, Matthias Zwicker *
WACV2022
[arxiv] [video] [poster] [github]

Human pose information is a critical component in many downstream image processing tasks, such as activity recognition and motion tracking. Likewise, a pose estimator for the illustrated character domain would provide a valuable prior for assistive content creation tasks, such as reference pose retrieval and automatic character animation. But while modern data-driven techniques have substantially improved pose estimation performance on natural images, little work has been done for illustrations. In our work, we bridge this domain gap by efficiently transfer-learning from both domain-specific and task-specific source models. Additionally, we upgrade and expand an existing illustrated pose estimation dataset, and introduce two new datasets for classification and segmentation subtasks. We then apply the resultant state-of-the-art character pose estimator to solve the novel task of pose-guided illustration retrieval. All data, models, and code will be made publicly available.

download

Downloads can be found in this drive folder: wacv2022_bizarre_pose_estimator_release

  • Download bizarre_pose_models.zip and extract to the root project directory; the extracted file structure should merge with the ones in this repo.
  • Download bizarre_pose_dataset.zip and extract to ./_data. The images and annotations should be at ./_data/bizarre_pose_dataset/raw.
  • Download character_bg_seg_data.zip and extract to ./_data. Under ./_data/character_bg_seg, there are bg and fg folders. All foregrounds come from danbooru, and are indexed by the provided csv. While some backgrounds come from danbooru, we use several from jerryli27/pixiv_dataset; these are somewhat hard to download, so we provide the raw pixiv images in the zip.
  • Please refer to Gwern's Danbooru dataset to download danbooru images by ID.

Warning: While NSFW art was filtered out from these data by tag, it was not possible to manually inspect all the data for mislabeled safety ratings. Please use this data at your own risk.

setup

Make a copy of ./_env/machine_config.bashrc.template to ./_env/machine_config.bashrc, and set $PROJECT_DN to the absolute path of this repository folder. The other variables are optional.

This project requires docker with a GPU. Run these lines from the project directory to pull the image and enter a container; note these are bash scripts inside the ./make folder, not make commands. Alternatively, you can build the docker image yourself.

make/docker_pull
make/shell_docker
# OR
make/docker_build
make/shell_docker

danbooru tagging

The danbooru subset used to train the tagger and custom tag rulebook can be found under ./_data/danbooru/_filters. Run this line to tag a sample image:

python3 -m _scripts.danbooru_tagger ./_samples/megumin.png

character background segmentation

Run this line to segment a sample image and extract the bounding box:

python3 -m _scripts.character_segmenter ./_samples/megumin.png

pose estimation

There are several models available in ./_train/character_pose_estim/runs, corresponding to our models at the top of Table 1 in the paper. Run this line to estimate the pose of a sample image, using one of those models:

python3 -m _scripts.pose_estimator \
    ./_samples/megumin.png \
    ./_train/character_pose_estim/runs/feat_concat+data.ckpt

pose-based retrieval

Run this line to estimate the pose of a sample image, and get links to danbooru posts with similar poses:

python3 -m _scripts.pose_retrieval ./_samples/megumin.png

faq

  • Does this work for multiple characters in an image, or images that aren't full-body? Sorry but no, this project is focused just on single full-body characters; however we may release our instance-based models separately.
  • Can I do this without docker? Please use docker, it is very good. If you can't use docker, you can try to replicate the environment from ./_env/Dockerfile, but this is untested.
  • What does bn mean in the files/code? It's sort for "basename", or an ID for a single data sample.
  • What is the sauce for the artwork in ./_samples? Full artist attributions are in the supplementary of our paper, Tables 2 and 3; the retrieval figure is the first two rows of Fig. 2, and Megumin is entry (1,0) of Fig. 3.
  • Which part is best? Part 4.
Owner
Shuhong Chen
Shuhong Chen
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022