Transfer Learning for Pose Estimation of Illustrated Characters

Overview

bizarre-pose-estimator

Transfer Learning for Pose Estimation of Illustrated Characters
Shuhong Chen *, Matthias Zwicker *
WACV2022
[arxiv] [video] [poster] [github]

Human pose information is a critical component in many downstream image processing tasks, such as activity recognition and motion tracking. Likewise, a pose estimator for the illustrated character domain would provide a valuable prior for assistive content creation tasks, such as reference pose retrieval and automatic character animation. But while modern data-driven techniques have substantially improved pose estimation performance on natural images, little work has been done for illustrations. In our work, we bridge this domain gap by efficiently transfer-learning from both domain-specific and task-specific source models. Additionally, we upgrade and expand an existing illustrated pose estimation dataset, and introduce two new datasets for classification and segmentation subtasks. We then apply the resultant state-of-the-art character pose estimator to solve the novel task of pose-guided illustration retrieval. All data, models, and code will be made publicly available.

download

Downloads can be found in this drive folder: wacv2022_bizarre_pose_estimator_release

  • Download bizarre_pose_models.zip and extract to the root project directory; the extracted file structure should merge with the ones in this repo.
  • Download bizarre_pose_dataset.zip and extract to ./_data. The images and annotations should be at ./_data/bizarre_pose_dataset/raw.
  • Download character_bg_seg_data.zip and extract to ./_data. Under ./_data/character_bg_seg, there are bg and fg folders. All foregrounds come from danbooru, and are indexed by the provided csv. While some backgrounds come from danbooru, we use several from jerryli27/pixiv_dataset; these are somewhat hard to download, so we provide the raw pixiv images in the zip.
  • Please refer to Gwern's Danbooru dataset to download danbooru images by ID.

Warning: While NSFW art was filtered out from these data by tag, it was not possible to manually inspect all the data for mislabeled safety ratings. Please use this data at your own risk.

setup

Make a copy of ./_env/machine_config.bashrc.template to ./_env/machine_config.bashrc, and set $PROJECT_DN to the absolute path of this repository folder. The other variables are optional.

This project requires docker with a GPU. Run these lines from the project directory to pull the image and enter a container; note these are bash scripts inside the ./make folder, not make commands. Alternatively, you can build the docker image yourself.

make/docker_pull
make/shell_docker
# OR
make/docker_build
make/shell_docker

danbooru tagging

The danbooru subset used to train the tagger and custom tag rulebook can be found under ./_data/danbooru/_filters. Run this line to tag a sample image:

python3 -m _scripts.danbooru_tagger ./_samples/megumin.png

character background segmentation

Run this line to segment a sample image and extract the bounding box:

python3 -m _scripts.character_segmenter ./_samples/megumin.png

pose estimation

There are several models available in ./_train/character_pose_estim/runs, corresponding to our models at the top of Table 1 in the paper. Run this line to estimate the pose of a sample image, using one of those models:

python3 -m _scripts.pose_estimator \
    ./_samples/megumin.png \
    ./_train/character_pose_estim/runs/feat_concat+data.ckpt

pose-based retrieval

Run this line to estimate the pose of a sample image, and get links to danbooru posts with similar poses:

python3 -m _scripts.pose_retrieval ./_samples/megumin.png

faq

  • Does this work for multiple characters in an image, or images that aren't full-body? Sorry but no, this project is focused just on single full-body characters; however we may release our instance-based models separately.
  • Can I do this without docker? Please use docker, it is very good. If you can't use docker, you can try to replicate the environment from ./_env/Dockerfile, but this is untested.
  • What does bn mean in the files/code? It's sort for "basename", or an ID for a single data sample.
  • What is the sauce for the artwork in ./_samples? Full artist attributions are in the supplementary of our paper, Tables 2 and 3; the retrieval figure is the first two rows of Fig. 2, and Megumin is entry (1,0) of Fig. 3.
  • Which part is best? Part 4.
Owner
Shuhong Chen
Shuhong Chen
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022