A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Overview

Differentiable SVD

Introduction

This repository contains:

  1. The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?
  2. A collection of differentiable SVD methods utilized in our paper.

You can also find the presentation of our work via the slides and via the poster.

About the paper

In this paper, we investigate the reason behind why approximate matrix square root calculated via Newton-Schulz iteration outperform the accurate ones computed by SVD from the perspectives of data precision and gradient smoothness. Various remedies for computing smooth SVD gradients are investigated. We also propose a new spectral meta-layer that uses SVD in the forward pass, and Pad'e approximants in the backward propagation to compute the gradients. The results of the so-called SVD-Pad'e achieve state-of-the-art results on ImageNet and FGVC datasets.

Differentiable SVD Methods

As the backward algorithm of SVD is prone to have numerical instability, we implement a variety of end-to-end SVD methods by manipulating the backward algortihms in this repository. They include:

  • SVD-Pad'e: use Pad'e approximants to closely approximate the gradient. It is proposed in our ICCV21 paper.
  • SVD-Taylor: use Taylor polynomial to approximate the smooth gradient. It is proposed in our ICCV21 paper and the TPAMI journal.
  • SVD-PI: use Power Iteration (PI) to approximate the gradients. It is proposed in the NeurIPS19 paper.
  • SVD-Newton: use the gradient of the Newton-Schulz iteration.
  • SVD-Trunc: set a upper limit of the gradient and apply truncation.
  • SVD-TopN: select the Top-N eigenvalues and abandon the rest.
  • SVD-Original: ordinary SVD with gradient overflow check.

In the task of global covaraince pooling, the SVD-Pad'e achieves the best performances. You are free to try other methods in your research.

Implementation and Usage

The codes is modifed on the basis of iSQRT-COV.

See the requirements.txt for the specific required packages.

To train AlexNet on ImageNet, choose a spectral meta-layer in the script and run:

CUDA_VISIBLE_DEVICES=0,1 bash train_alexnet.sh

The pre-trained models of ResNet-50 with SVD-Pad'e is available via Google Drive. You can load the state dict by:

model.load_state_dict(torch.load('pade_resnet50.pth.tar'))

Citation

If you think the codes is helpful to your research, please consider citing our paper:

@inproceedings{song2021approximate,
  title={Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?},
  author={Song, Yue and Sebe, Nicu and Wang, Wei},
  booktitle={ICCV},
  year={2021}
}

Contact

If you have any questions or suggestions, please feel free to contact me

[email protected]

Owner
YueSong
Ph.D. student in Computer Vision
YueSong
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022