D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Related tags

Deep LearningISC2021
Overview

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp

This is the source code of our 3rd place solution to matching track of Image Similarity Challenge (ISC) 2021 organized by Facebook AI. This repo will tell you how to get our result step by step.

Method Overview

For the Matching Track task, we use a global and local dual retrieval method. The global recall model is EsViT, the same as task Descriptor Track. The local recall used SIFT point features. As shown in the figure, our pipeline is divided into four modules. When using an image for query, it is first put into the preprocessing module for overlay detection. Then the global and local features are extracted and retrieved in parallel. There are three recall branches: global recall, original local recall and cropped local recall. The last module will compute the matching score of three branches and merge them into the final result.

method_overview

Installation

Please install python 3.7, Pytorch 1.8 (or higher version) and some packages according to requirements.txt.

gcc version 7.3.1

We run on a 8GPUs (Tesla V100-SXM2-32GB, 32510.5MB), 48CPUs and 300G Memory machine.

Get Result Demo

Now we will describe how to get our result, we use a query image Q24789.jpg as input for demo.

step1: query images preprocess

We train a yolov5 to detect the crop augment in query images. The detils are in README.md of Team: AITechnology in task Descriptor Track. Due to different parameters, we need to preprocess the local recall and global recall respectively.

python preprocessing.py $origin_image_path $save_image_result_path

e.g.
______
cd preprocess
python preprocessing_global.py ../data/queryimages/ ../data/queryimages_crop_global/
python preprocessing_local.py ../data/queryimages/ ../data/queryimages_crop_local/

*note: If Arial.ttf download fails, please copy the local yolov5/Arial.ttf to the specified directory following the command line prompt. cp yolov5/Arial.ttf /root/.config/Ultralytics/Arial.ttf

step2: get original image's local feature

First export the path.

cd local_fea/feature_extract
export LD_LIBRARY_PATH=./extLib/ 

Run the executable program localfea_extract_sift to get the SIFT local point feature, and out to a txt file.

Usage: ./localfea_extract_sift 
    
     
     
      

e.g.
./localfea_extract_sift Q24789 ../../data/queryimages/Q24789.jpg ../feature_out/Q24789.txt

     
    
   

Or you can extract all query images by a list.

python multi_extract_sift.py ../../data/querylist_demo.txt ../../data/queryimages/ ../feature_out/

For example, two point features in a image result txt file are:

Q24789_0_3.1348_65.589_1.76567_-1.09404||0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,13,0,0,0,0,0,0,16,28,7,5,0,0,0,0,0,0,0,0,20,12,0,0,23,5,0,0,29,29,7,12,56,29,5,0,0,11,7,20,38,45,10,0,0,0,0,14,0,0,0,0,39,56,36,8,39,14,0,0,46,56,21,24,56,22,0,0,5,8,8,39,38,11,0,0,0,0,19,47,0,0,0,0,8,56,56,7,37,0,0,0,10,52,56,56,52,0,0,0,0,0,35,56,11,0,0,0,0,0,54,45
Q24789_1_8.26344_431.038_1.75921_1.22328||42,27,0,4,11,12,9,14,49,28,0,6,17,25,18,14,45,37,4,0,12,45,8,9,8,17,9,0,27,50,6,0,41,24,0,0,10,14,19,20,50,34,0,6,20,22,17,21,36,22,4,4,43,50,15,12,26,32,8,0,17,50,17,6,28,12,0,0,0,21,31,21,50,14,0,0,17,31,23,38,19,10,9,17,50,50,14,15,17,23,13,10,19,45,26,8,11,11,0,0,0,6,6,0,28,13,0,0,8,20,12,15,11,9,0,0,24,47,12,9,18,38,22,6,13,28,10,8
...

step3: retrieval use original image local feature

We use the GPU Faiss to retrieval, because there are about 600 million SIFT point features in reference images. They need about 165G GPU Memory for Float16 compute.

Firstly, you need extract all local features of reference images by multi_extract_sift.py and store them in uint8 type to save space. (ref_sift_fea_300.pkl (68G) and ref_sift_name_300.pkl (25G))

Then get original image local recall result:

cd local_fea/faiss_search
python db_search.py ../feature_out/ ../faiss_out/local_pair_result.txt

For example, the result txt file ../faiss_out/local_pair_result.txt:

Q24789.jpg,R540735.jpg

step4: get crop image's local feature (only for part images which have crop result)

Same as step2, but only use the croped image in ../../preprocess/local_crop_list.txt.

cd local_fea/feature_extract
python multi_extract_sift.py ../../preprocess/local_crop_list.txt ../../data/queryimages_crop_local/ ../crop_feature_out/

step5: retrieval use crop image local feature (only for part images which have crop result)

Same as step3:

cd local_fea/faiss_search
python db_search.py ../crop_feature_out/ ../crop_faiss_out/crop_local_pair_result.txt

step6: get image's global feature

We train a EsViT model (follow the rules closely) to extract 256 dims global features, the detils are in README.md of Team: AITechnology in task Descriptor Track.

*note: for global feature, if the image have croped image, we will extract feature use the croped image, else use the origin image.

Generate h5 descriptors for all query images and reference images as submission style:

cd global_fea/feature_extract
python predict_FB_model.py --model checkpoints/EsViT_SwinB_finetune_bs8_lr0.0001_adjustlr_0_margin1.0_dataFB_epoch200.pth  --save_h5_name fb_descriptors_demo.h5  --model_type EsViT_SwinB_W14 --query ./query_list_demo.txt --total ./ref_list_demo.txt

*note: The --query and --total parameters are specified as query list and reference list, respectively.

The h5 file will be saved in ./h5_descriptors/fb_descriptors.h5

step7: retrieval use image's global feature

We have already added our h5 file in phase 1. Use faiss to get top1 pairs.

cd global_fea/faiss_search
python faiss_topk.py ../feature_extract/h5_descriptors/fb_descriptors.h5 ./global_pair_result.txt

step8: compute match score and final result

We use the SIFT feature + KNN-matching (K=2) to compute match point as score. We have already compiled it into an executable program.

Usage: ./match_score 
    
     
      
      

      
     
    
   

For example, to get original image local pairs score:

cd match_score
export LD_LIBRARY_PATH=../local_fea/feature_extract/extLib/
./match_score ../local_fea/faiss_out/local_pair_result.txt ../data/queryimages ../data/referenceimages/ ./local_pair_score.txt

The other two recall pairs are the same:

global: 
./match_score ../global_fea/faiss_search/global_pair_result.txt ../data/queryimages_crop_global ../data/referenceimages/ ./global_pair_score.txt

crop local:
./match_score ../local_fea/crop_faiss_out/crop_local_pair_result.txt ../data/queryimages_crop_local ../data/referenceimages/ ./crop_local_pair_score.txt

Finally, the three recall pairs are merged by:

python merge_score.py ./final_result.txt

Others

If you have any problem or error during running code, please email to us.

Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022