Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Overview

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Training Efficiency

We show the training efficiency of our DSLP model based on vanilla NAT model. Specifically, we compared the BLUE socres of vanilla NAT and vanilla NAT with DSLP & Mixed Training on the same traning time (in hours).

As we observed, our DSLP model achieves much higher BLUE scores shortly after the training started (~3 hours). It shows that our DSLP is much more efficient in training, as our model ahieves higher BLUE scores with the same amount of training cost.

Efficiency

We run the experiments with 8 Tesla V100 GPUs. The batch size is 128K tokens, and each model is trained with 300K updates.

Replication

We provide the scripts of replicating the results on WMT'14 EN-DE task.

Dataset

We download the distilled data from FairSeq

Preprocessed by

TEXT=wmt14_ende_distill
python3 fairseq_cli/preprocess.py --source-lang en --target-lang de \
   --trainpref $TEXT/train.en-de --validpref $TEXT/valid.en-de --testpref $TEXT/test.en-de \
   --destdir data-bin/wmt14.en-de_kd --workers 40 --joined-dictionary

Training:

GLAT with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_glat --criterion glat_loss --arch glat_sd --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 --glat-mode glat 

CMLM with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch glat_sd --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 

Vanilla NAT with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_sd --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 

Vanilla NAT with DSLP and Mixed Training:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_sd --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192  --ss-ratio 0.3 --fixed-ss-ratio --masked-loss

CTC with DSLP:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_ctc_sd --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 

CTC with DSLP and Mixed Training:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_ctc_sd_ss --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 --ss-ratio 0.3 --fixed-ss-ratio

Evaluation

fairseq-generate data-bin/wmt14.en-de_kd  --path PATH_TO_A_CHECKPOINT \
    --gen-subset test --task translation_lev --iter-decode-max-iter 0 \
    --iter-decode-eos-penalty 0 --beam 1 --remove-bpe --print-step --batch-size 100

Note: 1) Add --plain-ctc --model-overrides '{"ctc_beam_size": 1, "plain_ctc": True}' if it is CTC based; 2) Change the task to translation_glat if it is GLAT based.

Output

We in addition provide the output of CTC w/ DSLP, CTC w/ DSLP & Mixed Training, Vanilla NAT w/ DSLP, Vanilla NAT w/ DSLP with Mixed Training, GLAT w/ DSLP, and CMLM w/ DSLP for review purpose.

Model Reference Hypothesis
CTC w/ DSLP ref hyp
CTC w/ DSLP & Mixed Training ref hyp
Vanilla NAT w/ DSLP ref hyp
Vanilla NAT w/ DSLP & Mixed Training ref hyp
GLAT w/ DSLP ref hyp
CMLM w/ DSLP ref hyp

Note: The output is on WMT'14 EN-DE. The references are paired with hypotheses for each model.

Owner
Chenyang Huang
Stay hungry, stay foolish
Chenyang Huang
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021