Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Overview

Time-Sensitive-QA

The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset is collected by UCSB NLP group and issued under BSD 3-Clause "New" or "Revised" License.

This dataset is aimed to study the existing reading comprehension models' capability to perform temporal reasoning, and see whether they are sensitive to the temporal description in the given question. An example of annotated question-answer pairs are listed as follows: overview

Repo Structure

  • dataset/: this folder contains all the dataset
  • dataset/annotated*: these files are the annotated (passage, time-evolving facts) by crowd-workers.
  • dataset/train-dev-test: these files are synthesized using templates, including both easy and hard versions.
  • BigBird/: all the running code for BigBird models
  • FiD/: all the running code for fusion-in-decoder models

Requirements

  1. BigBird-Specific Requirements
  1. FiD-Specific Requirements

BigBird

Extractive QA baseline model, first switch to the BigBird Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=8

Running Evaluation (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=eval model_path=[YOUR_MODEL]

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=2

Running Evaluation (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard mode=eval cuda=[DEVICE] model_path=[YOUR_MODEL]

Fusion-in Decoder

Generative QA baseline model, first switch to the FiD Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/nq_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/tqa_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

License

The data and code are released under BSD 3-Clause "New" or "Revised" License.

Report

Please create an issue or send an email to [email protected] for any questions/bugs/etc.

Owner
wenhu chen
Research Scientist at Google AI, major in NLP/DL; Incoming Assistant Professor
wenhu chen
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022