Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Overview

Time-Sensitive-QA

The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset is collected by UCSB NLP group and issued under BSD 3-Clause "New" or "Revised" License.

This dataset is aimed to study the existing reading comprehension models' capability to perform temporal reasoning, and see whether they are sensitive to the temporal description in the given question. An example of annotated question-answer pairs are listed as follows: overview

Repo Structure

  • dataset/: this folder contains all the dataset
  • dataset/annotated*: these files are the annotated (passage, time-evolving facts) by crowd-workers.
  • dataset/train-dev-test: these files are synthesized using templates, including both easy and hard versions.
  • BigBird/: all the running code for BigBird models
  • FiD/: all the running code for fusion-in-decoder models

Requirements

  1. BigBird-Specific Requirements
  1. FiD-Specific Requirements

BigBird

Extractive QA baseline model, first switch to the BigBird Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=8

Running Evaluation (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=eval model_path=[YOUR_MODEL]

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=2

Running Evaluation (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard mode=eval cuda=[DEVICE] model_path=[YOUR_MODEL]

Fusion-in Decoder

Generative QA baseline model, first switch to the FiD Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/nq_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/tqa_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

License

The data and code are released under BSD 3-Clause "New" or "Revised" License.

Report

Please create an issue or send an email to [email protected] for any questions/bugs/etc.

Owner
wenhu chen
Research Scientist at Google AI, major in NLP/DL; Incoming Assistant Professor
wenhu chen
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022