Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Overview

Introduction

This is a PyTorch implementation of the following research papers:

The code is developed by Facebook AI Research.

The code trains neural networks to hold negotiations in natural language, and allows reinforcement learning self play and rollout-based planning.

Citation

If you want to use this code in your research, please cite:

@inproceedings{DBLP:conf/icml/YaratsL18,
  author    = {Denis Yarats and
               Mike Lewis},
  title     = {Hierarchical Text Generation and Planning for Strategic Dialogue},
  booktitle = {Proceedings of the 35th International Conference on Machine Learning,
               {ICML} 2018, Stockholmsm{\"{a}}ssan, Stockholm, Sweden, July
               10-15, 2018},
  pages     = {5587--5595},
  year      = {2018},
  crossref  = {DBLP:conf/icml/2018},
  url       = {http://proceedings.mlr.press/v80/yarats18a.html},
  timestamp = {Fri, 13 Jul 2018 14:58:25 +0200},
  biburl    = {https://dblp.org/rec/bib/conf/icml/YaratsL18},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Dataset

We release our dataset together with the code, you can find it under data/negotiate. This dataset consists of 5808 dialogues, based on 2236 unique scenarios. Take a look at §2.3 of the paper to learn about data collection.

Each dialogue is converted into two training examples in the dataset, showing the complete conversation from the perspective of each agent. The perspectives differ on their input goals, output choice, and in special tokens marking whether a statement was read or written. See §3.1 for the details on data representation.

# Perspective of Agent 1
<input> 1 4 4 1 1 2 </input>
<dialogue> THEM: i would like 4 hats and you can have the rest . <eos> YOU: deal <eos> THEM: <selection> </dialogue>
<output> item0=1 item1=0 item2=1 item0=0 item1=4 item2=0 </output> 
<partner_input> 1 0 4 2 1 2 </partner_input>

# Perspective of Agent 2
<input> 1 0 4 2 1 2 </input>
<dialogue> YOU: i would like 4 hats and you can have the rest . <eos> THEM: deal <eos> YOU: <selection> </dialogue>
<output> item0=0 item1=4 item2=0 item0=1 item1=0 item2=1 </output>
<partner_input> 1 4 4 1 1 2 </partner_input>

Setup

All code was developed with Python 3.0 on CentOS Linux 7, and tested on Ubuntu 16.04. In addition, we used PyTorch 1.0.0, CUDA 9.0, and Visdom 0.1.8.4.

We recommend to use Anaconda. In order to set up a working environment follow the steps below:

# Install anaconda
conda create -n py30 python=3 anaconda
# Activate environment
source activate py30
# Install PyTorch
conda install pytorch torchvision cuda90 -c pytorch
# Install Visdom if you want to use visualization
pip install visdom

Usage

Supervised Training

Action Classifier

We use an action classifier to compare performance of various models. The action classifier is described in section 3 of (2). It can be trained by running the following command:

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.1 \
--init_range 0.2 \
--lr 0.001 \
--max_epoch 7 \
--min_lr 1e-05 \
--model_type selection_model \
--momentum 0.1 \
--nembed_ctx 128 \
--nembed_word 128 \
--nhid_attn 128 \
--nhid_ctx 64 \
--nhid_lang 128 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--skip_values \
--sep_sel \
--model_file selection_model.th

Baseline RNN Model

This is the baseline RNN model that we describe in (1):

python train.py \
--cuda \
--bsz 16 \
--clip 0.5 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.1 \
--model_type rnn_model \
--init_range 0.2 \
--lr 0.001 \
--max_epoch 30 \
--min_lr 1e-07 \
--momentum 0.1 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_attn 64 \
--nhid_ctx 64 \
--nhid_lang 128 \
--nhid_sel 128 \
--sel_weight 0.6 \
--unk_threshold 20 \
--sep_sel \
--model_file rnn_model.th

Hierarchical Latent Model

In this section we provide guidelines on how to train the hierarchical latent model from (2). The final model requires two sub-models: the clustering model, which learns compact representations over intents; and the language model, which translates intent representations into language. Please read sections 5 and 6 of (2) for more details.

Clustering Model

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.2 \
--init_range 0.3 \
--lr 0.001 \
--max_epoch 15 \
--min_lr 1e-05 \
--model_type latent_clustering_model \
--momentum 0.1 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_ctx 64 \
--nhid_lang 256 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--num_clusters 50 \
--sep_sel \
--skip_values \
--nhid_cluster 256 \
--selection_model_file selection_model.th \
--model_file clustering_model.th

Language Model

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.1 \
--init_range 0.2 \
--lr 0.001 \
--max_epoch 15 \
--min_lr 1e-05 \
--model_type latent_clustering_language_model \
--momentum 0.1 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_ctx 64 \
--nhid_lang 256 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--num_clusters 50 \
--sep_sel \
--nhid_cluster 256 \
--skip_values \
--selection_model_file selection_model.th \
--cluster_model_file clustering_model.th \
--model_file clustering_language_model.th

Full Model

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.2 \
--init_range 0.3 \
--lr 0.001 \
--max_epoch 10 \
--min_lr 1e-05 \
--model_type latent_clustering_prediction_model \
--momentum 0.2 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_ctx 64 \
--nhid_lang 256 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--num_clusters 50 \
--sep_sel \
--selection_model_file selection_model.th \
--lang_model_file clustering_language_model.th \
--model_file full_model.th

Selfplay

If you want to have two pretrained models to negotiate against each another, use selfplay.py. For example, lets have two rnn models to play against each other:

python selfplay.py \
--cuda \
--alice_model_file rnn_model.th \
--bob_model_file rnn_model.th \
--context_file data/negotiate/selfplay.txt  \
--temperature 0.5 \
--selection_model_file selection_model.th

The script will output generated dialogues, as well as some statistics. For example:

================================================================================
Alice : book=(count:3 value:1) hat=(count:1 value:5) ball=(count:1 value:2)
Bob   : book=(count:3 value:1) hat=(count:1 value:1) ball=(count:1 value:6)
--------------------------------------------------------------------------------
Alice : i would like the hat and the ball . <eos>
Bob   : i need the ball and the hat <eos>
Alice : i can give you the ball and one book . <eos>
Bob   : i can't make a deal without the ball <eos>
Alice : okay then i will take the hat and the ball <eos>
Bob   : okay , that's fine . <eos>
Alice : <selection>
Alice : book=0 hat=1 ball=1 book=3 hat=0 ball=0
Bob   : book=3 hat=0 ball=0 book=0 hat=1 ball=1
--------------------------------------------------------------------------------
Agreement!
Alice : 7 points
Bob   : 3 points
--------------------------------------------------------------------------------
dialog_len=4.47 sent_len=6.93 agree=86.67% advantage=3.14 time=2.069s comb_rew=10.93 alice_rew=6.93 alice_sel=60.00% alice_unique=26 bob_rew=4.00 bob_sel=40.00% bob_unique=25 full_match=0.78 
--------------------------------------------------------------------------------
debug: 3 1 1 5 1 2 item0=0 item1=1 item2=1
debug: 3 1 1 1 1 6 item0=3 item1=0 item2=0
================================================================================

Reinforcement Learning

To fine-tune a pretrained model with RL use the reinforce.py script:

python reinforce.py \
--cuda \
--alice_model_file rnn_model.th \
--bob_model_file rnn_model.th \
--output_model_file rnn_rl_model.th \
--context_file data/negotiate/selfplay.txt  \
--temperature 0.5 \
--verbose \
--log_file rnn_rl.log \
--sv_train_freq 4 \
--nepoch 4 \
--selection_model_file selection_model.th  \
--rl_lr 0.00001 \
--rl_clip 0.0001 \
--sep_sel

License

This project is licenced under CC-by-NC, see the LICENSE file for details.

Owner
Facebook Research
Facebook Research
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022