CATE: Computation-aware Neural Architecture Encoding with Transformers

Overview

CATE: Computation-aware Neural Architecture Encoding with Transformers

Code for paper:

CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan, Kaiqiang Song, Fei Liu, Mi Zhang.
ICML 2021 (Long Talk).

CATE
Overview of CATE: It takes computationally similar architecture pairs as the input and trained to predict masked operators given the pairwise computation information. Apart from the cross-attention blocks, the pretrained Transformer encoder is used to extract architecture encodings for the downstream search.

The repository is built upon pybnn and nas-encodings.

Requirements

conda create -n tf python=3.7
source activate tf
cat requirements.txt | xargs -n 1 -L 1 pip install

Experiments on NAS-Bench-101

Dataset preparation on NAS-Bench-101

Install nasbench and download nasbench_only108.tfrecord in ./data folder.

python preprocessing/gen_json.py

Data will be saved in ./data/nasbench101.json.

Generate architecture pairs

python preprocessing/data_generate.py --dataset nasbench101 --flag extract_seq
python preprocessing/data_generate.py --dataset nasbench101 --flag build_pair --k 2 --d 2000000 --metric params

The corresponding training data and pairs will be saved in ./data/nasbench101/.

Alternatively, you can download the data train_data.pt, test_data.pt and pair indices train_pair_k2_d2000000_metric_params.pt, test_pair_k2_d2000000_metric_params.pt from here.

Pretraining

bash run_scripts/pretrain_nasbench101.sh

The pretrained models will be saved in ./model/.

Alternatively, you can download the pretrained model nasbench101_model_best.pth from here.

Extract the pretrained encodings

python inference/inference.py --pretrained_path model/nasbench101_model_best.pth.tar --train_data data/nasbench101/train_data.pt --valid_data data/nasbench101/test_data.pt --dataset nasbench101

The extracted embeddings will be saved in ./cate_nasbench101.pt.

Alternatively, you can download the pretrained embeddings cate_nasbench101.pt from here.

Run search experiments on NAS-Bench-101

bash run_scripts/run_search_nasbench101.sh

Search results will be saved in ./nasbench101/.

Experiments on NAS-Bench-301

Dataset preparation

Install nasbench301 and download the xgb_v1.0 and lgb_runtime_v1.0 file. You may need to make pytorch_geometric compatible with Pytorch and CUDA version.

python preprocessing/gen_json_darts.py # randomly sample 1,000,000 archs

Data will be saved in ./data/nasbench301_proxy.json.

Alternatively, you can download the json file nasbench301_proxy.json from here.

Generate architecture pairs

python preprocessing/data_generate.py --dataset nasbench301 --flag extract_seq
python preprocessing/data_generate.py --dataset nasbench301 --flag build_pair --k 1 --d 5000000 --metric flops

The correspoding training data and pairs will be saved in ./data/nasbench301/.

Alternatively, you can download the data train_data.pt, test_data.pt and pair indices train_pair_k1_d5000000_metric_flops.pt, test_pair_k1_d5000000_metric_flops.pt from here.

Pretraining

bash run_scripts/pretrain_nasbench301.sh

The pretrained models will be saved in ./model/.

Alternatively, you can download the pretrained model nasbench301_model_best.pth from here.

Extract the pretrained encodings

python inference/inference.py --pretrained_path model/nasbench301_model_best.pth.tar --train_data data/nasbench301/train_data.pt --valid_data data/nasbench301/test_data.pt --dataset nasbench301 --n_vocab 11

The extracted encodings will be saved in ./cate_nasbench301.pt.

Alternatively, you can download the pretrained embeddings cate_nasbench301.pt from here.

Run search experiments on NAS-Bench-301

bash run_scripts/run_search_nasbench301.sh

Search results will be saved in ./nasbench301/.

DARTS experiments without surrogate models

Download the pretrained embeddings cate_darts.pt from here.

python search_methods/dngo_ls_darts.py --dim 64 --init_size 16 --topk 5 --dataset darts --output_path bo  --embedding_path cate_darts.pt

Search log will be saved in ./darts/. Final search result will be saved in ./darts/bo/dim64.

Evaluate the learned cell on DARTS Search Space on CIFAR-10

python darts/cnn/train.py --auxiliary --cutout --arch cate_small
python darts/cnn/train.py --auxiliary --cutout --arch cate_large
  • Expected results (CATE-Small): 2.55% avg. test error with 3.5M model params.
  • Expected results (CATE-Large): 2.46% avg. test error with 4.1M model params.

Transfer learning on ImageNet

python darts/cnn/train_imagenet.py  --arch cate_small --seed 1 
python darts/cnn/train_imagenet.py  --arch cate_large --seed 1
  • Expected results (CATE-Small): 26.05% test error with 5.0M model params and 556M mult-adds.
  • Expected results (CATE-Large): 25.01% test error with 5.8M model params and 642M mult-adds.

Visualize the learned cell

python darts/cnn/visualize.py cate_small
python darts/cnn/visualize.py cate_large

Experiments on outside search space

Build outside search space dataset

bash run_scripts/generate_oo.sh

Data will be saved in ./data/nasbench101_oo_train.json and ./data/nasbench101_oo_test.json.

Generate architecture pairs

python preprocessing/data_generate_oo.py --flag extract_seq
python preprocessing/data_generate_oo.py --flag build_pair

The corresponding training data and pair indices will be saved in ./data/nasbench101/.

Pretraining

python run.py --do_train --parallel --train_data data/nasbench101/nasbench101_oo_trainSet_train.pt --train_pair data/nasbench101/oo_train_pairs_k2_params_dist2e6.pt  --valid_data data/nasbench101/nasbench101_oo_trainSet_validation.pt --valid_pair data/nasbench101/oo_validation_pairs_k2_params_dist2e6.pt --dataset oo

The pretrained models will be saved in ./model/.

Extract embeddings on outside search space

# Adjacency encoding
python inference/inference_adj.py
# CATE encoding
python inference/inference.py --pretrained_path model/oo_model_best.pth.tar --train_data data/nasbench101/nasbench101_oo_testSet_split1.pt --valid_data data/nasbench101/nasbench101_oo_testSet_split2.pt --dataset oo_nasbench101

The extracted encodings will be saved as ./adj_oo_nasbench101.pt and ./cate_oo_nasbench101.pt.

Alternatively, you can download the data, pair indices, pretrained models, and extracted embeddings from here.

Run MLP predictor experiments on outside search space

for s in {1..500}; do python search_methods/oo_mlp.py --dim 27 --seed $s --init_size 16 --topk 5 --dataset oo_nasbench101 --output_path np_adj  --embedding_path adj_oo_nasbench101.pt; done
for s in {1..500}; do python search_methods/oo_mlp.py --dim 64 --seed $s --init_size 16 --topk 5 --dataset oo_nasbench101 --output_path np_cate  --embedding_path cate_oo_nasbench101.pt; done

Search results will be saved in ./oo_nasbench101.

Citation

If you find this useful for your work, please consider citing:

@InProceedings{yan2021cate,
  title = {CATE: Computation-aware Neural Architecture Encoding with Transformers},
  author = {Yan, Shen and Song, Kaiqiang and Liu, Fei and Zhang, Mi},
  booktitle = {ICML},
  year = {2021}
}
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023