OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Overview

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network

OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Dataset:

The dataset is taken from yahoo finace's website in CSV format. The dataset consists of Open, High, Low and Closing Prices of Apple Inc. stocks from 3rd january 2011 to 13th August 2017 - total 1664 rows.

Price Indicator:

Stock traders mainly use three indicators for prediction: OHLC average (average of Open, High, Low and Closing Prices), HLC average (average of High, Low and Closing Prices) and Closing price, In this project, OHLC average has been used.

Data Pre-processing:

After converting the dataset into OHLC average, it becomes one column data. This has been converted into two column time series data, 1st column consisting stock price of time t, and second column of time t+1. All values have been normalized between 0 and 1.

Model:

Two sequential LSTM layers have been stacked together and one dense layer is used to build the RNN model using Keras deep learning library. Since this is a regression task, 'linear' activation has been used in final layer.

Version:

Python 2.7 and latest versions of all libraries including deep learning library Keras and Tensorflow.

Training:

75% data is used for training. Adagrad (adaptive gradient algorithm) optimizer is used for faster convergence. After training starts it will look like:

tt3

Test:

Test accuracy metric is root mean square error (RMSE).

Results:

The comparison of OHLC, HLC and Closing price:

ttt1

After the training the fitted curve with original stock price:

tt2

Observation and Conclusion:

Since difference among OHLC average, HLC average and closing value is not significat, so only OHLC average is used to build the model and prediction. The training and testing RMSE are: 1.24 and 1.37 respectively which is pretty good to predict future values of stock. Stock price of last day of dataset was 158.8745 and using this model and price of next two days are predicted as 160.3230 and 160.9240 - which were 159.2075 and 159.8325 on 14th and 15th August 2017 according to Yahoo Finance. However, future values for any time period can be predicted using this model.

Finally, this work can greatly help the quantitative traders to take decisions.

Owner
Nouroz Rahman
Data Scientist at Pathao. Interests: Deep Learning, Data Science, Financial Mathematics, Bayesian Statistics.
Nouroz Rahman
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
OCR Post Correction for Endangered Language Texts

πŸ“Œ Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Π—Π²Ρ‘Π·Π΄ΠΎΡ‡ΠΊΠ° Siamese TabNet Биамская TabNet прСдсказываСт ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° нСдвиТимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022