Code for "Searching for Efficient Multi-Stage Vision Transformers"

Overview

Searching for Efficient Multi-Stage Vision Transformers

This repository contains the official Pytorch implementation of "Searching for Efficient Multi-Stage Vision Transformers" and is based on DeiT and timm.

photo not available

Illustration of the proposed multi-stage ViT-Res network.


photo not available

Illustration of weight-sharing neural architecture search with multi-architectural sampling.


photo not available

Accuracy-MACs trade-offs of the proposed ViT-ResNAS. Our networks achieves comparable results to previous work.

Content

  1. Requirements
  2. Data Preparation
  3. Pre-Trained Models
  4. Training ViT-Res
  5. Performing Neural Architecture Search
  6. Evaluation

Requirements

The codebase is tested with 8 V100 (16GB) GPUs.

To install requirements:

    pip install -r requirements.txt

Docker files are provided to set up the environment. Please run:

    cd docker

    sh 1_env_setup.sh
    
    sh 2_build_docker_image.sh
    
    sh 3_run_docker_image.sh

Make sure that the configuration specified in 3_run_docker_image.sh is correct before running the command.

Data Preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Pre-Trained Models

Pre-trained weights of super-networks and searched networks can be found here.

Training ViT-Res

To train ViT-Res-Tiny, modify IMAGENET_PATH in scripts/vit-sr-nas/reference_net/tiny.sh and run:

    sh scripts/vit-sr-nas/reference_net/tiny.sh 

We use 8 GPUs for training. Please modify numbers of GPUs (--nproc_per_node) and adjust batch size (--batch-size) if different numbers of GPUs are used.

Performing Neural Architecture Search

0. Building Sub-Train and Sub-Val Set

Modify _SOURCE_DIR, _SUB_TRAIN_DIR, and _SUB_VAL_DIR in search_utils/build_subset.py, and run:

    cd search_utils
    
    python build_subset.py
    
    cd ..

1. Super-Network Training

Before running each script, modify IMAGENET_PATH (directed to the directory containing the sub-train and sub-val sets).

For ViT-ResNAS-Tiny, run:

    sh scripts/vit-sr-nas/super_net/tiny.sh

For ViT-ResNAS-Small and Medium, run:

    sh scripts/vit-sr-nas/super_net/small.sh

2. Evolutionary Search

Before running each script, modify IMAGENET_PATH (directed to the directory containing the sub-train and sub-val sets) and MODEL_PATH.

For ViT-ResNAS-Tiny, run:

    sh scripts/vit-sr-nas/evolutionary_search/tiny.sh

For ViT-ResNAS-Small, run:

    sh scripts/vit-sr-nas/evolutionary_search/[email protected]

For ViT-ResNAS-Medium, run:

    sh scripts/vit-sr-nas/evolutionary_search/[email protected]

After running evolutionary search for each network, see summary.txt in output directory and modify network_def.

For example, the network_def in summary.txt is ((4, 220), (1, (220, 5, 32), (220, 880), 1), (1, (220, 5, 32), (220, 880), 1), (1, (220, 7, 32), (220, 800), 1), (1, (220, 7, 32), (220, 800), 0), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (3, 220, 440), (1, (440, 10, 48), (440, 1760), 1), (1, (440, 10, 48), (440, 1440), 1), (1, (440, 10, 48), (440, 1920), 1), (1, (440, 10, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1120), 0), (1, (440, 12, 48), (440, 1440), 1), (3, 440, 880), (1, (880, 16, 64), (880, 3200), 1), (1, (880, 12, 64), (880, 3200), 1), (1, (880, 16, 64), (880, 2880), 1), (1, (880, 12, 64), (880, 3200), 0), (1, (880, 12, 64), (880, 2240), 1), (1, (880, 12, 64), (880, 3520), 0), (1, (880, 14, 64), (880, 2560), 1), (2, 880, 1000)).

Remove the element in the tuple that has 1 in the first element and 0 in the last element (e.g. (1, (220, 5, 32), (220, 880), 0)).

This reflects that the transformer block is removed in a searched network.

After this modification, the network_def becomes ((4, 220), (1, (220, 5, 32), (220, 880), 1), (1, (220, 5, 32), (220, 880), 1), (1, (220, 7, 32), (220, 800), 1), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (1, (220, 5, 32), (220, 720), 1), (3, 220, 440), (1, (440, 10, 48), (440, 1760), 1), (1, (440, 10, 48), (440, 1440), 1), (1, (440, 10, 48), (440, 1920), 1), (1, (440, 10, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1600), 1), (1, (440, 12, 48), (440, 1440), 1), (3, 440, 880), (1, (880, 16, 64), (880, 3200), 1), (1, (880, 12, 64), (880, 3200), 1), (1, (880, 16, 64), (880, 2880), 1), (1, (880, 12, 64), (880, 2240), 1), (1, (880, 14, 64), (880, 2560), 1), (2, 880, 1000)).

Then, use the searched network_def for searched network training.

3. Searched Network Training

Before running each script, modify IMAGENET_PATH.

For ViT-ResNAS-Tiny, run:

    sh scripts/vit-sr-nas/searched_net/tiny.sh

For ViT-ResNAS-Small, run:

    sh scripts/vit-sr-nas/searched_net/[email protected]

For ViT-ResNAS-Medium, run:

    sh scripts/vit-sr-nas/searched_net/[email protected]

4. Fine-tuning Trained Networks at Higher Resolution

Before running, modify IMAGENET_PATH and FINETUNE_PATH (directed to trained ViT-ResNAS-Medium checkpoint). Then, run:

    sh scripts/vit-sr-nas/finetune/[email protected]

To fine-tune at different resolutions, modify --model, --input-size and --mix-patch-len. We provide models at resolutions 280, 336, and 392 as shown in here. Note that --input-size must be equal to "56 * --mix-patch-len" since the spatial size in ViT-ResNAS is reduced by 56X.

Evaluation

Before running, modify IMAGENET_PATH and MODEL_PATH. Then, run:

    sh scripts/vit-sr-nas/eval/[email protected]

Questions

Please direct questions to Yi-Lun Liao ([email protected]).

License

This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file.

Owner
Yi-Lun Liao
Yi-Lun Liao
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022