PyTorch code for JEREX: Joint Entity-Level Relation Extractor

Overview

JEREX: "Joint Entity-Level Relation Extractor"

PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and experiments, see our paper "An End-to-end Model for Entity-level Relation Extraction using Multi-instance Learning": https://arxiv.org/abs/2102.05980 (accepted at EACL 2021).

alt text

Setup

Requirements

  • Required
    • Python 3.7+
    • PyTorch (tested with version 1.8.1 - see here on how to install the correct version)
    • PyTorch Lightning (tested with version 1.2.7)
    • transformers (+sentencepiece, e.g. with 'pip install transformers[sentencepiece]', tested with version 4.5.1)
    • hydra-core (tested with version 1.0.6)
    • scikit-learn (tested with version 0.21.3)
    • tqdm (tested with version 4.43.0)
    • numpy (tested with version 1.18.1)
    • jinja2 (tested with version 2.11.3)

Fetch data

Execute the following steps before running the examples.

(1) Fetch end-to-end (joint) DocRED [1] dataset split. For the original DocRED split, see https://github.com/thunlp/DocRED :

bash ./scripts/fetch_datasets.sh

(2) Fetch model checkpoints (joint multi-instance model (end-to-end split) and relation classification multi-instance model (original split)):

bash ./scripts/fetch_models.sh

Examples

End-to-end (joint) model

(1) Train JEREX (joint model) using the end-to-end split:

python ./jerex_train.py --config-path configs/docred_joint

(2) Evaluate JEREX (joint model) on the end-to-end split (you need to fetch the model first):

python ./jerex_test.py --config-path configs/docred_joint

Relation Extraction (only) model

To run these examples, first download the original DocRED dataset into './data/datasets/docred/' (see 'https://github.com/thunlp/DocRED' for instructions)

(1) Train JEREX (multi-instance relation classification component) using the orignal DocRED dataset.

python ./jerex_train.py --config-path configs/docred

(2) Evaluate JEREX (multi-instance relation classification component) on the original DocRED test set (you need to fetch the model first):

python ./jerex_test.py --config-path configs/docred

Since the original test set labels are hidden, the code will output an F1 score of 0. A 'predictions.json' file is saved, which can be used to retrieve test set metrics by uploading it to the DocRED CodaLab challenge (see https://github.com/thunlp/DocRED)

Reproduction and Evaluation

  • If you want to compare your end-to-end model to JEREX using the strict evaluation setting, have a look at our evaluation script.
  • The DocRED dataset contains some duplicate annotations (especially entity mentions). Duplicates are removed during evaluation (i.e. only counted once).

Configuration / Hyperparameters

  • The hyperparameters used in our paper are set as default. You can adjust hyperparameters and other configuration settings in the 'train.yaml' and 'test.yaml' under ./configs
  • Settings can also be overriden via command line, e.g.:
python ./jerex_train.py training.max_epochs=40
  • A brief explanation of available configuration settings can be found in './configs.py'
  • Besides the main JEREX model ('joint_multi_instance') and the 'global' baseline ('joint_global') you can also train each sub-component ('mention_localization', 'coreference_resolution', 'entity_classification', 'relation_classification_multi_instance', 'relation_classification_global') individually. Just set 'model.model_type' accordingly (e.g. 'model.model_type: joint_global')

Prediction result inspection / Postprocessing

  • When testing a model ('./jerex_test.py') or by either specifying a test dataset (using 'datasets.test_path' configuration) or setting 'final_valid_evaluate' to True (using 'misc.final_valid_evaluate=true' configuration) during training ('./jerex_train.py'), a file containing the model's predictions is stored ('predictions.json').
  • By using a joint model ('joint_multi_instance' / 'joint_global'), a file ('examples.html') containing visualizations of all prediction results is also stored alongside 'predictions.json'.

Training/Inference speed and memory consumption

Performing a search over token spans (and pairs of spans) in the input document (as in JEREX) can be quite (CPU/GPU) memory demanding. If you run into memory issues (i.e. crashing of training/inference), these settings may help:

  • 'training.max_spans'/'training.max_coref_pairs'/'training.max_rel_pairs' (or 'inference.max_spans'/'inference.max_coref_pairs'/'inference.max_rel_pairs'): These settings restrict the number of spans/mention pairs for coreference resolution/mention pairs for MI relation classification that are processed simultaneously. Setting these to a lower number reduces training/inference speed, but lowers memory consumption.
  • The default setting of maximum span size is quite large. If the entity mentions in your dataset are usually shorter than 10 tokens, you can restrict the span search to less tokens (by setting 'sampling.max_span_size')

References

[1] Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin,Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou,and Maosong Sun. 2019.  DocRED: A Large-Scale Document-Level  Relation  Extraction  Dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 764–777, Florence, Italy. ACL.
Owner
LAVIS - NLP Working Group
LAVIS - NLP Working Group
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022