Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Related tags

Deep Learningnglod
Overview

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces

Official code release for NGLOD. For technical details, please refer to:

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces
Towaki Takikawa*, Joey Litalien*, Kangxue Xin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler
In Computer Vision and Pattern Recognition (CVPR), 2021 (Oral)
[Paper] [Bibtex] [Project Page]

If you find this code useful, please consider citing:

@article{takikawa2021nglod,
    title = {Neural Geometric Level of Detail: Real-time Rendering with Implicit {3D} Shapes}, 
    author = {Towaki Takikawa and
              Joey Litalien and 
              Kangxue Yin and 
              Karsten Kreis and 
              Charles Loop and 
              Derek Nowrouzezahrai and 
              Alec Jacobson and 
              Morgan McGuire and 
              Sanja Fidler},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}

New: Sparse training code with Kaolin now available in app/spc! Read more about it here

Directory Structure

sol-renderer contains our real-time rendering code.

sdf-net contains our training code.

Within sdf-net:

sdf-net/lib contains all of our core codebase.

sdf-net/app contains standalone applications that users can run.

Getting started

Python dependencies

The easiest way to get started is to create a virtual Python 3.8 environment:

conda create -n nglod python=3.8
conda activate nglod
pip install --upgrade pip
pip install -r ./infra/requirements.txt

The code also relies on OpenEXR, which requires a system library:

sudo apt install libopenexr-dev 
pip install pyexr

To see the full list of dependencies, see the requirements.

Building CUDA extensions

To build the corresponding CUDA kernels, run:

cd sdf-net/lib/extensions
chmod +x build_ext.sh && ./build_ext.sh

The above instructions were tested on Ubuntu 18.04/20.04 with CUDA 10.2/11.1.

Training & Rendering

Note. All following commands should be ran within the sdf-net directory.

Download sample data

To download a cool armadillo:

wget https://raw.githubusercontent.com/alecjacobson/common-3d-test-models/master/data/armadillo.obj -P data/

To download a cool matcap file:

wget https://raw.githubusercontent.com/nidorx/matcaps/master/1024/6E8C48_B8CDA7_344018_A8BC94.png -O data/matcap/green.png

Training from scratch

python app/main.py \
    --net OctreeSDF \
    --num-lods 5 \
    --dataset-path data/armadillo.obj \
    --epoch 250 \
    --exp-name armadillo

This will populate _results with TensorBoard logs.

Rendering the trained model

If you set custom network parameters in training, you need to also reflect them for the renderer.

For example, if you set --feature-dim 16 above, you need to set it here too.

python app/sdf_renderer.py \
    --net OctreeSDF \
    --num-lods 5 \
    --pretrained _results/models/armadillo.pth \
    --render-res 1280 720 \
    --shading-mode matcap \
    --lod 4

By default, this will populate _results with the rendered image.

If you want to export a .npz model which can be loaded into the C++ real-time renderer, add the argument --export path/file.npz. Note that the renderer only supports the base Neural LOD configuration (the default parameters with OctreeSDF).

Core Library Development Guide

To add new functionality, you will likely want to make edits to the files in lib.

We try our best to keep our code modular, such that key components such as trainer.py and renderer.py need not be modified very frequently to add new functionalities.

To add a new network architecture for an example, you can simply add a new Python file in lib/models that inherits from a base class of choice. You will probably only need to implement the sdf method which implements the forward pass, but you have the option to override other methods as needed if more custom operations are needed.

By default, the loss function used are defined in a CLI argument, which the code will automatically parse and iterate through each loss function. The network architecture class is similarly defined in the CLI argument; simply use the exact class name, and don't forget to add a line in __init__.py to resolve the namespace.

App Development Guide

To make apps that use the core library, add the sdf-net directory into the Python sys.path, so the modules can be loaded correctly. Then, you will likely want to inherit the same CLI parser defined in lib/options.py to save time. You can then add a new argument group app to the parser to add custom CLI arguments to be used in conjunction with the defaults. See app/sdf_renderer.py for an example.

Examples of things that are considered apps include, but are not limited to:

  • visualizers
  • training code
  • downstream applications

Third-Party Libraries

This code includes code derived from 3 third-party libraries, all distributed under the MIT License:

https://github.com/zekunhao1995/DualSDF

https://github.com/rogersce/cnpy

https://github.com/krrish94/nerf-pytorch

Acknowledgements

We would like to thank Jean-Francois Lafleche, Peter Shirley, Kevin Xie, Jonathan Granskog, Alex Evans, and Alex Bie at NVIDIA for interesting discussions throughout the project. We also thank Peter Shirley, Alexander Majercik, Jacob Munkberg, David Luebke, Jonah Philion and Jun Gao for their help with paper editing.

We also thank Clement Fuji Tsang for his help with the code release.

The structure of this repo was inspired by PIFu: https://github.com/shunsukesaito/PIFu

This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023