Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Related tags

Deep LearningSCF
Overview

Sphere Confidence Face (SCF)

This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen Li, Xu Jianqing, Xiaqing Xu, Pengcheng Shen, Shaoxin Li, and Bryan Hooi. Spherical Confidence Learning for Face Recognition, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021 with Appendices.

Empirical Results

IJB-B ResNet100 1e-5 ResNet100 1e-4 IJB-C ResNet100 1e-5 ResNet100 1e-4
CosFace 89.81 94.59 CosFace 93.86 95.95
+ PFE-G 89.96 94.64 + PFE-G 94.09 96.04
+ PFE-v N/A N/A + PFE-v N/A N/A
+ SCF-G 89.97 94.56 + SCF-G 94.15 96.02
+ SCF 91.02 94.95 + SCF 94.78 96.22
ArcFace 89.33 94.20 ArcFace 93.15 95.60
+ PFE-G 89.55 94.30 + PFE-G 92.95 95.32
+ PFE-v N/A N/A + PFE-v N/A N/A
+ SCF-G 89.52 94.24 + SCF-G 93.85 95.33
+ SCF 90.68 94.74 + SCF 94.04 96.09

Requirements

  • python==3.6.0
  • torch==1.6.0
  • torchvision==0.7.0
  • tensorboard==2.4.0

Getting Started

Training

Training consists of two separate steps:

  1. Train ResNet100 imported from backbones.py as the deterministic backbone using spherical loss, e.g. ArcFace loss.
  2. Train SCF based on the pretrained backbone by specifying the arguments including [GPU_IDS], [OUTPUT_DIR], [PATH_BACKBONE_CKPT] (the path of the pretrained backbone checkpoint) and [PATH_FC_CKPT] (the path of the pretrained fc-layer checkpoint) and then running the command:
python train.py \
    --dataset "ms1m" \
    --seed 777 \
    --gpu_ids [GPU_IDS] \
    --batch_size 1024 \
    --output_dir [OUTPUT_DIR] \
    --saved_bkb [PATH_BACKBONE_CKPT] \
    --saved_fc [PATH_FC_CKPT] \
    --num_workers 8 \
    --epochs 30 \
    --lr 3e-5 \
    --lr_scheduler "StepLR" \
    --step_size 2 \
    --gamma 0.5 \
    --convf_dim 25088 \
    --z_dim 512 \
    --radius 64 \
    --max_grad_clip 0 \
    --max_grad_norm 0 \
    --tensorboard

Test

IJB benchmark: use $\kappa$ as confidence score for each face image to aggregate representations as in Eqn (14). Refer to the standard IJB benchmark for implementation.

1v1 verification benchmark: use Eqn (13) as the similarity score.

Other Implementations

SCF in TFace: SCF

Citation

@inproceedings{li2021spherical,
  title={Spherical Confidence Learning for Face Recognition},
  author={Li, Shen and Xu, Jianqing and Xu, Xiaqing and Shen, Pengcheng and Li, Shaoxin and Hooi, Bryan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={15629--15637},
  year={2021}
}
Owner
Maths
Maths
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022