[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

Overview

K-Net: Towards Unified Image Segmentation

PWC

Introduction

This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will also be integrated in the future release of MMDetection and MMSegmentation.

K-Net:Towards Unified Image Segmentation,
Wenwei Zhang, Jiangmiao Pang, Kai Chen, Chen Change Loy
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021
[arXiv][project page][Bibetex]

Results

The results of K-Net and their corresponding configs on each segmentation task are shown as below. We have released the full model zoo of panoptic segmentation. The complete model checkpoints and logs for instance and semantic segmentation will be released soon.

Semantic Segmentation on ADE20K

Backbone Method Crop Size Lr Schd mIoU Config Download
R-50 K-Net + FCN 512x512 80K 43.3 config model | log
R-50 K-Net + PSPNet 512x512 80K 43.9 config model | log
R-50 K-Net + DeepLabv3 512x512 80K 44.6 config model | log
R-50 K-Net + UPerNet 512x512 80K 43.6 config model | log
Swin-T K-Net + UPerNet 512x512 80K 45.4 config model | log
Swin-L K-Net + UPerNet 512x512 80K 52.0 config model | log
Swin-L K-Net + UPerNet 640x640 80K 52.7 config model | log

Instance Segmentation on COCO

Backbone Method Lr Schd Mask mAP Config Download
R-50 K-Net 1x 34.0 config model | log
R-50 K-Net ms-3x 37.8 config model | log
R-101 K-Net ms-3x 39.2 config model | log
R-101-DCN K-Net ms-3x 40.5 config model | log

Panoptic Segmentation on COCO

Backbone Method Lr Schd PQ Config Download
R-50 K-Net 1x 44.3 config model | log
R-50 K-Net ms-3x 47.1 config model | log
R-101 K-Net ms-3x 48.4 config model | log
R-101-DCN K-Net ms-3x 49.6 config model | log
Swin-L (window size 7) K-Net ms-3x 54.6 config model | log
Above on test-dev 55.2

Installation

It requires the following OpenMMLab packages:

  • MIM >= 0.1.5
  • MMCV-full >= v1.3.14
  • MMDetection >= v2.17.0
  • MMSegmentation >= v0.18.0
  • scipy
  • panopticapi
pip install openmim scipy mmdet mmsegmentation
pip install git+https://github.com/cocodataset/panopticapi.git
mim install mmcv-full

License

This project is released under the Apache 2.0 license.

Usage

Data preparation

Prepare data following MMDetection and MMSegmentation. The data structure looks like below:

data/
├── ade
│   ├── ADEChallengeData2016
│   │   ├── annotations
│   │   ├── images
├── coco
│   ├── annotations
│   │   ├── panoptic_{train,val}2017.json
│   │   ├── instance_{train,val}2017.json
│   │   ├── panoptic_{train,val}2017/  # panoptic png annotations
│   │   ├── image_info_test-dev2017.json  # for test-dev submissions
│   ├── train2017
│   ├── val2017
│   ├── test2017

Training and testing

For training and testing, you can directly use mim to train and test the model

# train instance/panoptic segmentation models
sh ./tools/mim_slurm_train.sh $PARTITION mmdet $CONFIG $WORK_DIR

# test instance segmentation models
sh ./tools/mim_slurm_test.sh $PARTITION mmdet $CONFIG $CHECKPOINT --eval segm

# test panoptic segmentation models
sh ./tools/mim_slurm_test.sh $PARTITION mmdet $CONFIG $CHECKPOINT --eval pq

# train semantic segmentation models
sh ./tools/mim_slurm_train.sh $PARTITION mmseg $CONFIG $WORK_DIR

# test semantic segmentation models
sh ./tools/mim_slurm_test.sh $PARTITION mmseg $CONFIG $CHECKPOINT --eval mIoU

For test submission for panoptic segmentation, you can use the command below:

# we should update the category information in the original image test-dev pkl file
# for panoptic segmentation
python -u tools/gen_panoptic_test_info.py
# run test-dev submission
sh ./tools/mim_slurm_test.sh $PARTITION mmdet $CONFIG $CHECKPOINT  --format-only --cfg-options data.test.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json data.test.img_prefix=data/coco/test2017 --eval-options jsonfile_prefix=$WORK_DIR

You can also run training and testing without slurm by directly using mim for instance/semantic/panoptic segmentation like below:

PYTHONPATH='.':$PYTHONPATH mim train mmdet $CONFIG $WORK_DIR
PYTHONPATH='.':$PYTHONPATH mim train mmseg $CONFIG $WORK_DIR
  • PARTITION: the slurm partition you are using
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CONFIG: the config files under the directory configs/
  • JOB_NAME: the name of the job that are necessary for slurm

Citation

@inproceedings{zhang2021knet,
    title={{K-Net: Towards} Unified Image Segmentation},
    author={Wenwei Zhang and Jiangmiao Pang and Kai Chen and Chen Change Loy},
    year={2021},
    booktitle={NeurIPS},
}
Owner
Wenwei Zhang
Wenwei Zhang
Wenwei Zhang
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022