The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

Overview

TriageSQL

The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL"

Dataset Download

Due to the size limitation, please download the dataset from Google Drive.

Citations

If you want to use TriageSQL in your work, please cite as follows:

@article{zhang2020did,
  title={Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL},
  author={Zhang, Yusen and Dong, Xiangyu and Chang, Shuaichen and Yu, Tao and Shi, Peng and Zhang, Rui},
  journal={arXiv preprint arXiv:2010.12634},
  year={2020}
}

Dataset

In each json file of the dataset, one can find a field called type, which includes 5 different values, including small talk, answerable, ambiguous, lack data, and unanswerable by sql, corresponding to 5 different types described in our paper. Here is the summary of our dataset and the corresponding experiment results:

Type Trainset Devset Testset Type Alias Reported F1
small talk 31160 7790 500 Improper 0.88
ambiguous 48592 9564 500 Ambiguous 0.43
lack data 90375 19566 500 ExtKnow 0.56
unanswerable by sql 124225 26330 500 Non-SQL 0.90
answerable 139884 32892 500 Answerable 0.53
overall 434236 194037 2500 TriageSQL 0.66

The folder src contains all the source files used to construct the proposed TriageSQL. In addition, some part of files contains more details about the dataset, such as databaseid which is the id of the schema in the original dataset, e.g. "flight_2" in CoSQL, while question_datasetid indicates the original dataset name of the questions, e.g. "quac". Some of the samples do not contain these fields because they are either human-annotated or edited.

Model

We also include the source code for RoBERTa baseline in our project in /model. It is a multi-classifer with 5 classes where '0' represents answerable, '1'-'4' represent distinct types of unanswerable questions. Given the dataset from Google Drive, you may need to conduct some preprocessing to obtain train/dev/test set. You can directly download from here or make your own dataset using the following instructions:

Constructing input file for the RoBERTa model

The same as /testset/test.json, our input file is a json list with shape (num_of_question, 3) containing 3 lists: query, schema, and label.

  • query: containing strings of questions
  • schema: contianing strings of schema for each question, i.e., "table_name.column_name1 | table_name.column_name2 | ... " for multi-table questions, and column_name1 | column_name2 for single-table questions.
  • labels of questions, see config.label_dict for the mapping, leave arbitary value if testing is not needed or true labels are not given.

when preprocessing, please use lower case for all data, and remove the meaningless table names as well, such as T10023-1242. Also, we sample 10k from each type to form the large input dataset

Running

After adjusting the parameters in config.py, one can simply run python train.py or python eval.py to train or evaluate the model.

Explanation of other files

  • config.py: hyper parameters
  • train.py: training and evaluation of the model
  • utils.py: loading the dataset and tokenization
  • model.py: the RoBERTa classification model we used
  • test.json: sample of test input
Owner
Yusen Zhang
Yusen Zhang
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022