Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

Overview

SSSNET

SSSNET: Semi-Supervised Signed Network Clustering

For details, please read our paper.

Environment Setup

Overview

The project has been tested on the following environment specification:

  1. Ubuntu 18.04.5 LTS (Other x86_64 based Linux distributions should also be fine, such as Fedora 32)
  2. Nvidia Graphic Card (NVIDIA GeForce RTX 2080 with driver version 440.36, and NVIDIA RTX 8000) and CPU (Intel Core i7-10700 CPU @ 2.90GHz)
  3. Python 3.6.13 (and Python 3.6.12)
  4. CUDA 10.2 (and CUDA 9.2)
  5. Pytorch 1.8.0 (built against CUDA 10.2) and Python 1.6.0 (built against CUDA 9.2)
  6. Other libraries and python packages (See below)

You should handle (1),(2) yourself. For (3), (4), (5) and (6), see following methods.

Installation Method 1 (Using Installation Script)

We provide two examples of environmental setup, one with CUDA 10.2 and GPU, the other with CPU.

Following steps assume you've done with (1) and (2).

  1. Install conda. Both Miniconda and Anaconda are OK.

  2. Run the following bash script under SSSNET's root directory.

./create_conda_env.sh

Installation Method 2 (.yml files)

We provide two examples of envionmental setup, one with CUDA 10.2 and GPU, the other with CPU.

Following steps assume you've done with (1) and (2).

  1. Install conda. Both Miniconda and Anaconda are OK.

  2. Create an environment and install python packages (GPU):

conda env create -f environment_GPU.yml
  1. Create an environment and install python packages (CPU):
conda env create -f environment_CPU.yml

Installation Method 3 (Manually Install)

The codebase is implemented in Python 3.6.12. package versions used for development are just below.

networkx           2.5
tqdm               4.50.2
numpy              1.19.2
pandas             1.1.4
texttable          1.6.3
latextable         0.1.1
scipy              1.5.4
argparse           1.1.0
sklearn            0.23.2
torch              1.8.1
torch-scatter      2.0.5
torch-geometric    1.6.3 (follow https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html)
matplotlib         3.3.4 (for generating plots and results)
SigNet         (for comparison methods, can get from the command: pip install git+https://github.com/alan-turing-institute/SigNet.git)

Execution checks

When installation is done, you could check you enviroment via:

bash setup_test.sh

Folder structure

  • ./execution/ stores files that can be executed to generate outputs. For vast number of experiments, we use GNU parallel, can be downloaded in command line and make it executable via:
wget http://git.savannah.gnu.org/cgit/parallel.git/plain/src/parallel
chmod 755 ./parallel
  • ./joblog/ stores job logs from parallel. You might need to create it by
mkdir joblog
  • ./Output/ stores raw outputs (ignored by Git) from parallel. You might need to create it by
mkdir Output
  • ./data/ stores processed data sets for node clustering.

  • ./src/ stores files to train various models, utils and metrics.

  • ./result_arrays/ stores results for different data sets. Each data set has a separate subfolder.

  • ./result_anlysis/ stores notebooks for generating result plots or tables.

  • ./logs/ stores trained models and logs, as well as predicted clusters (optional). When you are in debug mode (see below), your logs will be stored in ./debug_logs/ folder.

Options

SSSNET provides the following command line arguments, which can be viewed in the ./src/param_parser.py and ./src/link_sign_param_parser.py.

Synthetic data options:

See file ./src/param_parser.py.

  --p                     FLOAT         Probability of the existence of a link.                 Default is 0.02. 
  --eta                   FLOAT         Probability of flipping the sign of each edge.          Default is 0.1.
  --N                     INT           (Expected) Number of nodes in an SSBM.                  Default is 1000.
  --K                     INT           Number of blocks in an SSBM.                            Default is 3.
  --total_n               INT           Total number of nodes in the polarized network.         Default is 1050.
  --num_com               INT           Number of polarized communities (SSBMs).                Default is 2.

Major model options:

See file ./src/param_parser.py.

  --epochs                INT         Number of SSSNET (maximum) training epochs.               Default is 300. 
  --early_stopping        INT         Number of SSSNET early stopping epochs.                   Default is 100. 
  --num_trials            INT         Number of trials to generate results.                     Default is 10.
  --seed_ratio            FLOAT       Ratio in the training set of each cluster 
                                                        to serve as seed nodes.                 Default is 0.1.
  --loss_ratio            FLOAT       Ratio of loss_pbnc to loss_pbrc. -1 means only loss_pbnc. Default is -1.0.
  --supervised_loss_ratio FLOAT       Ratio of factor of supervised loss part to
                                      self-supervised loss part.                                Default is 50.
  --triplet_loss_ratio    FLOAT       Ratio of triplet loss to cross entropy loss in 
                                      supervised loss part.                                     Default is 0.1.
  --tau                   FLOAT       Regularization parameter when adding self-loops to the positive 
                                      part of the adjacency matrix, i.e. A -> A + tau * I,
                                      where I is the identity matrix.                           Default is 0.5.
  --hop                   INT         Number of hops to consider for the random walk.           Default is 2.
  --samples               INT         Number of samples in triplet loss.                        Default is 10000.
  --train_ratio           FLOAT       Training ratio.                                           Default is 0.8.  
  --test_ratio            FLOAT       Test ratio.                                               Default is 0.1.
  --lr                    FLOAT       Initial learning rate.                                    Default is 0.01.  
  --weight_decay          FLOAT       Weight decay (L2 loss on parameters).                     Default is 5^-4. 
  --dropout               FLOAT       Dropout rate (1 - keep probability).                      Default is 0.5.
  --hidden                INT         Number of hidden units.                                   Default is 32. 
  --seed                  INT         Random seed.                                              Default is 31.
  --no-cuda               BOOL        Disables CUDA training.                                   Default is False.
  --debug, -D             BOOL        Debug with minimal training setting, not to get results.  Default is False.
  --directed              BOOL        Directed input graph.                                     Default is False.
  --no_validation         BOOL        Whether to disable validation and early stopping
                                      during traing.                                            Default is False.
  --regenerate_data       BOOL        Whether to force creation of data splits.                 Default is False.
  --load_only             BOOL        Whether not to store generated data.                      Default is False.
  --dense                 BOOL        Whether not to use torch sparse.                          Default is False.
  -AllTrain, -All         BOOL        Whether to use all data to do gradient descent.           Default is False.
  --SavePred, -SP         BOOL        Whether to save predicted labels.                         Default is False.
  --dataset               STR         Data set to consider.                                     Default is 'SSBM/'.
  --all_methods           LST         Methods to use to generate results.                       Default is ['spectral','SSSNET'].
  --feature_options       LST         Features to use for SSSNET. 
                                      Can choose from ['A_reg','L','given','None'].            Default is ['A_reg'].

Reproduce results

First, get into the ./execution/ folder:

cd execution

To reproduce SSBM results.

bash SSBM.sh

To reproduce results on polarized SSBMs.

bash polarized.sh

To reproduce results of node clustering on real data.

bash real.sh

Note that if you are operating on CPU, you may delete the commands ``CUDA_VISIBLE_DEVICES=xx". You can also set you own number of parallel jobs, not necessarily following the j numbers in the .sh files.

You can also use CPU for training if you add ``--no-duca", or GPU if you delete this.

Direct execution with training files

First, get into the ./src/ folder:

cd src

Then, below are various options to try:

Creating an SSSNET model for SSBM of the default setting.

python ./train.py

Creating an SSSNET model for polarized SSBMs with 5000 nodes, N=500.

python ./train.py --dataset polarized --total_n 5000 --N 500

Creating a model for S&P1500 data set with some custom learning rate and epoch number.

python ./train.py --dataset SP1500 --lr 0.001 --epochs 300

Creating a model for Wiki-Rfa data set (directed) with specific number of trials and use CPU.

python ./train.py --dataset wikirfa --directed --no-cuda --num_trials 5

Note

  • When no ground-truth exists, the labels loaded for training/testing are not really meaningful. They simply provides some relative Adjusted Rand Index (ARI) for the model's predicted clustering to some fitted/dummy clustering. The codebase loads these fitted/dummy labels and prints out ARIs for completeness instead of evaluation purpose.

  • Other versions of the code. ./src/PyG_models.py provides a version of SSSNET with pytorch geometric message passing implementation, and ./src/PyG_train.py runs this model for SSSNET. Note that this implementation gives almost the same results.


Owner
Yixuan He
DPhil in Statistics @ University of Oxford
Yixuan He
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022