An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

Related tags

Deep LearningEVolve
Overview

EVolve

Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem.

Overview

EVolve is a linked mantle degassing and atmospheric growth code, which models the growth of a rocky planet's secondary atmosphere under the influence of volcanism.

Installation

EVolve is written in Python3, and is incompatible with Python 2.7. Two very useful tools to set up python environments:
Pip - package installer for Python
Anaconda - virtual environment manager

  1. Clone the repository with submodules and enter directory

    git clone --recurse-submodules [email protected]:pipliggins/evolve.git
    

    Note: If you don't clone with submodules you won't get the two modules used to run EVolve, the EVo volcanic degassing model and the FastChem equilibrium chemistry code.

  2. Compile FastChem:

    cd fastchem
    git submodules update --init --recursive
    mkdir build & cd build
    cmake -DUSE_PYTHON==ON ..
    make
    

    This will pull the pybind11 module required for the python bindings, and compile both the C++ code, and the python bindings which are used in EVolve to conect to FastChem.

    Note: FastChem is an external C++ module, used to compute atmospheric equilibrium chemistry. Therefore, to run on Windows, I recommend using WSL (Windows Subsystem for Linux) to make the process of compiling the C code easier. If you encounter installation issues relating to the cmake version, I found the accepted answer here to work for me. A list of the suggested terminal commands can also be found at the bottom of this README file.

  3. Install dependencies using either Pip install or Anaconda. Check requirements.txt for full details. If using Pip, install all dependencies from the main directory of EVolve using

    pip3 install -r requirements.txt
    

    Troubleshoot: The GMPY2 module requires several libraries (MPFR and MPC) which are not pre-loaded in some operating systems, particularly Windows. If the GMPY2 module does not install, or you have other install issues, try

    pip3 install wheel
    sudo apt install libgmp-dev libmpfr-dev libmpc-dev
    pip3 install -r requirements.txt
    

Running EVolve

EVolve can be run either with or without the FastChem equilibrium chemistry in the atmosphere. To run Evolve with FastChem, from the main directory of EVolve run

python evolve.py inputs.yaml --fastchem

The available tags are:

  • --fastchem ).This will use fastchem to run equilibrium chemistry in the atmosphere, producing more chemical species than the magma degassing model uses and enabling the atmospheric equilibrium temperature to be lower than magmatic.

  • --nocrust ).This option stops a crustal reservoir from being formed out of the degassed melt which has been erupted. Instead, the degassed melt and any volatiles remaining in it are re-incorporated back into the mantle. If this tag is NOT used, the mantle mass will gradually reduce as there is no mechanism for re-introducing the crustal material back into the mantle implemented here.

All the input models for EVolve, and the submodules EVo and FastChem are stored in the 'inputs' folder:

Filename Relevant module Properties
atm.yaml EVolve main Sets the pre-existing atmospheric chemistry and surface pressures + temperatures for the planet
mantle.yaml EVolve main Sets the initial planetary mantle/rocky body properties, including temperature, mass, fO2, the mantle volatile concentrations and the volcanic intrusive:extrusive ratio
planet.yaml EVolve main Sets generic planetary properties and important run settings, including planetary mass, radius, the amount of mantle melting occurring at each timestep and the size & number of timesteps the model will run.
chem.yaml EVo Contains the major oxide composition of the magma being input to EVo
env.yaml EVo Contains the majority of the run settings and volatile contents for the EVo run.
output.yaml EVo Stops any graphical input from EVo compared to it's default settings
config.input FastChem Sets the names and locations for input and output files for FastChem, and output settings
parameters.dat FastChem Location of elemental abundance files, and configuration parameters

Files highlighted in bold should be edited by the user; all others are optimied for EVolve and/or will be edited by the code as it is running. Explainations for each parameter setting in the EVolve files can be found at the bottom of this README file.

As EVolve runs, it creates and updates files in the outputs folder as follows:

Filename Data
atmosphere_out.csv Planetary surface pressure and atmospheric composition for tracked molecules in units of volume mixing ratios (actually mo fraction), calculated after each time step
mantle_out.csv Mantle volatile budget and fO2 after each timestep
volc_out.csv The final pressure iteration from the EVo output file in each timestep (storing melt volatile contents, atomic volatile contents, gas speciation in mol & wt fractions, etc)
fc_input.csv Generated if fastchem is selected: The input to FastChem after atmospheric mixing, and hydrogen escape if that is occuring, for each timestep.
fc_out.csv Generated if fastchem is selected: The results from FastChem after each timestep

Installation help for WSL

If you see an error saying that the installed version of cmake is too low to install FastChem, try these commands: Please note this is just a suggestion based on what worked for me, try these workarounds at your own risk!

sudo apt-get update
sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget

wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -

sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
sudo apt-get update

sudo apt-get install cmake
Owner
Pip Liggins
3rd year PhD student studying Earth Sciences. I model volcanic degassing chemistry and its impact on planetary atmospheres.
Pip Liggins
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022