Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Overview

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos

report PWC

This repository is the official tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos" in CVPR 2021 (Oral Presentation) (Best Paper Nominated).

Project Page
TikTok Dataset

Teaser Image

This codebase provides:

  • Inference code
  • Training code
  • Visualization code

Requirements

(This code is tested with tensorflow-gpu 1.14.0, Python 3.7.4, CUDA 10 (version 10.0.130) and cuDNN 7 (version 7.4.2).)

  • numpy
  • imageio
  • matplotlib
  • scikit-image
  • scipy==1.1.0
  • tensorflow-gpu==1.14.0
  • gast==0.2.2
  • Pillow

Installation

Run the following code to install all pip packages:

pip install -r requirements.txt 

In case there is a problem, you can use the following tensorflow docker container "(tensorflow:19.02-py3)":

sudo docker run --gpus all -it --rm -v local_dir:container_dir nvcr.io/nvidia/tensorflow:19.02-py3

Then install the requirements:

pip install -r requirements.txt 

Inference Demo

Input:

The test data dimension should be: 256x256. For any test data you should have 3 .png files: (For an example please take a look at the demo data in "test_data" folder.)

  • name_img.png : The 256x256x3 test image
  • name_mask.png : The 256x256 corresponding mask. You can use any off-the-shelf tools such as removebg to remove the background and get the mask.
  • name_dp.png : The 256x256x3 corresponding DensePose.

Output:

Running the demo generates the following:

  • name.txt : The 256x256 predicted depth
  • name_mesh.obj : The reconstructed mesh. You can use any off-the-shelf tools such as MeshLab to visualize the mesh. Visualization for demo data from different views:

Teaser Image

  • name_normal_1.txt, name_normal_2.txt, name_normal_3.txt : Three 256x256 predicted normal. If you concatenate them in the third axis it will give you the 256x256x3 normal map.
  • name_results.png : visualization of predicted depth heatmap and the predicted normal map. Visualization for demo data:

Teaser Image

Run the demo:

Download the weights from here and extract in the main repository or run this in the main repository:

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1UOHkmwcWpwt9r11VzOCa_CVamwHVaobV' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1UOHkmwcWpwt9r11VzOCa_CVamwHVaobV" -O model.zip && rm -rf /tmp/cookies.txt

unzip model.zip

Run the following python code:

python HDNet_Inference.py

From line 26 to 29 under "test path and outpath" you can choose the input directory (default: './test_data'), ouput directory (default: './test_data/infer_out') and if you want to save the visualization (default: True).

More Results

Teaser Image

Training

To train the network, go to training folder and read the README file

MATLAB Visualization

If you want to generate visualizations similar to those on the website, go to MATLAB_Visualization folder and run

make_video.m

From lines 7 to 14, you can choose the test folder (default: test_data) and the image name to process (default: 0043). This will generate a video of the prediction from different views (default: "test_data/infer_out/video/0043/video.avi") This process will take around 2 minutes to generate 164 angles.

Note that this visualization will always generate a 672 × 512 video, You may want to resize your video accordingly for your own tested data.

Citation

If you find the code or our dataset useful in your research, please consider citing the paper.

@InProceedings{Jafarian_2021_CVPR_TikTok,
    author    = {Jafarian, Yasamin and Park, Hyun Soo},
    title     = {Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {12753-12762}} 
Owner
Yasamin Jafarian
PhD Candidate at the University of Minnesota.
Yasamin Jafarian
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022