Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Overview

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos

report PWC

This repository is the official tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos" in CVPR 2021 (Oral Presentation) (Best Paper Nominated).

Project Page
TikTok Dataset

Teaser Image

This codebase provides:

  • Inference code
  • Training code
  • Visualization code

Requirements

(This code is tested with tensorflow-gpu 1.14.0, Python 3.7.4, CUDA 10 (version 10.0.130) and cuDNN 7 (version 7.4.2).)

  • numpy
  • imageio
  • matplotlib
  • scikit-image
  • scipy==1.1.0
  • tensorflow-gpu==1.14.0
  • gast==0.2.2
  • Pillow

Installation

Run the following code to install all pip packages:

pip install -r requirements.txt 

In case there is a problem, you can use the following tensorflow docker container "(tensorflow:19.02-py3)":

sudo docker run --gpus all -it --rm -v local_dir:container_dir nvcr.io/nvidia/tensorflow:19.02-py3

Then install the requirements:

pip install -r requirements.txt 

Inference Demo

Input:

The test data dimension should be: 256x256. For any test data you should have 3 .png files: (For an example please take a look at the demo data in "test_data" folder.)

  • name_img.png : The 256x256x3 test image
  • name_mask.png : The 256x256 corresponding mask. You can use any off-the-shelf tools such as removebg to remove the background and get the mask.
  • name_dp.png : The 256x256x3 corresponding DensePose.

Output:

Running the demo generates the following:

  • name.txt : The 256x256 predicted depth
  • name_mesh.obj : The reconstructed mesh. You can use any off-the-shelf tools such as MeshLab to visualize the mesh. Visualization for demo data from different views:

Teaser Image

  • name_normal_1.txt, name_normal_2.txt, name_normal_3.txt : Three 256x256 predicted normal. If you concatenate them in the third axis it will give you the 256x256x3 normal map.
  • name_results.png : visualization of predicted depth heatmap and the predicted normal map. Visualization for demo data:

Teaser Image

Run the demo:

Download the weights from here and extract in the main repository or run this in the main repository:

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1UOHkmwcWpwt9r11VzOCa_CVamwHVaobV' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1UOHkmwcWpwt9r11VzOCa_CVamwHVaobV" -O model.zip && rm -rf /tmp/cookies.txt

unzip model.zip

Run the following python code:

python HDNet_Inference.py

From line 26 to 29 under "test path and outpath" you can choose the input directory (default: './test_data'), ouput directory (default: './test_data/infer_out') and if you want to save the visualization (default: True).

More Results

Teaser Image

Training

To train the network, go to training folder and read the README file

MATLAB Visualization

If you want to generate visualizations similar to those on the website, go to MATLAB_Visualization folder and run

make_video.m

From lines 7 to 14, you can choose the test folder (default: test_data) and the image name to process (default: 0043). This will generate a video of the prediction from different views (default: "test_data/infer_out/video/0043/video.avi") This process will take around 2 minutes to generate 164 angles.

Note that this visualization will always generate a 672 × 512 video, You may want to resize your video accordingly for your own tested data.

Citation

If you find the code or our dataset useful in your research, please consider citing the paper.

@InProceedings{Jafarian_2021_CVPR_TikTok,
    author    = {Jafarian, Yasamin and Park, Hyun Soo},
    title     = {Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {12753-12762}} 
Owner
Yasamin Jafarian
PhD Candidate at the University of Minnesota.
Yasamin Jafarian
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022