Python implementation of Wu et al (2018)'s registration fusion

Overview

reg-fusion

logo
Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown).

This is a Python implementation of Wu et al (2018)'s registration fusion methods to project MRI data from standard volumetric coordinates, either MNI152 or Colin27, to Freesurfer's fsaverage. This tool already available in the original MATLAB-based version provided by Wu et al, which works well out of the box. However, given Python's increasing stake in neuroimaging analysis, a pure Python version may be useful.

A huge thank you to Wu et al for making their excellent tool openly available! If you use this package, please cite the original:

Wu J, Ngo GH, Greve DN, Li J, He T, Fischl B, Eickhoff SB, Yeo BTT. Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems, Human Brain Mapping 39:3793–3808, 2018.

Installation

This package requires Python 3. Installing regfusion is simple with pip:

pip install regfusion

If you want to build regfusion directly from source code, use the following code:

git clone https://github.com/danjgale/reg-fusion
cd reg-fusion
python setup.py install

Command-line interface

Registration fusion can be ran on the command-line using regfusion. The flags correspond to the original implemenation, with the exception of -t, which is specific to regfusion (see Notes).

usage: regfusion [-h] [-s input_vol] [-o output_dir] [-p template_type] [-r RF_type] [-i interp] [-t out_type]

optional arguments:
  -h, --help        show this help message and exit
  -s input_vol      Absolute path to input volume. Input should be in nifti format
  -o output_dir     Absolute path to output directory
  -p template_type  Type of volumetric template used in index files. Use MNI152_orig or Colin27_orig when -r is RF_ANTs. Use MNI152_norm or Colin27_norm when
                    -r is RF_M3Z. Otherwise, an exception is raised. Ensure that the template matches the standard space of -i (i.e., use MNI152_* if -i is
                    in MNI152-space). Default: MNI152_orig
  -r RF_type        Type of Registration Fusion approaches used to generate the mappings (RF_M3Z or RF_ANTs). RF_M3Z is recommended if data was registered
                    from subject's space to the volumetric atlas space using FreeSurfer. RF_ANTs is recommended if such registrations were carried out using
                    other tools, especially ANTs. Default: RF_ANTs
  -i interp         Interpolation (linear or nearest). If -g is label.gii, then interpolation is always set to nearest and a warning is raised. Default:
                    linear
  -t out_type       File type of surface files. nii.gz is true to the original Wu et al (2018) implementation. Note that gifti formats, either func.gii or
                    label.gii, are often preferred. Default: nii.gz

Python API

The CLI simply calls the main underlying function, vol_to_fsaverage. This function can imported directly in Python. In addition to saving the files to out_dir, the absolute file paths of the left and right surface files are returned.

vol_to_fsaverage(input_img, out_dir, template_type='MNI152_orig', 
                 rf_type='RF_ANTs', interp='linear', out_type='nii.gz'):

    Project volumetric data in standard space (MNI152 or Colin27) to 
    fsaverage 

    Parameters
    ----------
    input_img : niimg-like
        Input image in standard space (i.e. MNI152 or Colin27)
    out_dir : str
        Path to output directory (does not need to already exist)
    template_type : {'MNI152_orig', 'Colin27_orig', 'MNI152_norm', 'Colin27_norm'}
        Type of volumetric template used in index files. Use 'MNI152_orig' or 
        'Colin27_orig' when `rf_type` is 'RF_ANTs'. Use 'MNI152_norm' or 
        'Colin27_norm' when `rf_type` is 'RF_M3Z'. Otherwise, an exception is 
        raised. Ensure that the template matches the standard space of 
        `input_img` (i.e., use MNI152_* if `input_img` is in MNI152-space). By 
        default 'MNI152_orig'.
    rf_type : {'RF_ANTs', 'RF_M3Z'}
        Type of Registration Fusion approaches used to generate the mappings.
        RF-M3Z is recommended if data was registered from subject's space to 
        the volumetric atlas space using FreeSurfer. RF-ANTs is recommended if 
        such registrations were carried out using other tools, especially 
        ANTs. By default 'RF_ANTs'
    interp : {'linear', 'nearest'}, optional
        Interpolation approach. If `out_type` is 'label.gii', then interpolation 
        is always set to 'nearest'. By default 'linear'
    out_type : {'nii.gz, 'func.gii', 'label.gii'}, optional
        File type of surface files. Default is 'nii.gz', which is true to the 
        original Wu et al (2018) implementation. Note that gifti 
        formats, either 'func.gii' or 'label.gii', are often preferred.

    Returns
    ----------
    str, str
        Absolute paths to left and right hemisphere output files, respectively

Examples

1. MNI to fsaverage (default)

For example, the default RF-ANTs implementation (preferred) with MNI data would be:

CLI:
regfusion -s mni_input.nii.gz -o output

Python:
from regfusion import vol_to_fsaverage
lh, rh = vol_to_fsaverage('mni_input.nii.gz', 'output')

True to the original implementation, two surface files (one each hemisphere) are saved to the output directory with the RF method and template embedded in the file names:

output/
  lh.mni_input.allSub_RF_ANTs_MNI152_orig_to_fsaverage.nii.gz
  rh.mni_input.allSub_RF_ANTs_MNI152_orig_to_fsaverage.nii.gz

2. MNI to fsaverage (GIfTI)

It may be preferred to generate GIfTI files instead of the default NIfTI:

CLI:
regfusion -s mni_input.nii.gz -o output -t func.gii

Python:
from regfusion import vol_to_fsaverage
lh, rh = vol_to_fsaverage('mni_input.nii.gz', 'output', out_type='func.gii')

The output, which will have the appropriate GIfTI file extensions:

output/
  lh.mni_input.allSub_RF_ANTs_MNI152_orig_to_fsaverage.func.gii
  rh.mni_input.allSub_RF_ANTs_MNI152_orig_to_fsaverage.func.gii

3. Projecting to label.gii

Should you wish to project a binary mask (e.g., to display a region of interest), you may consider setting the output type, -t, to label.gii. In this case, interpolation, -i, will always be set to nearest to retain the original voxel values/labels. If not explicitly set with -i, interpolation will be overwritten to nearest and warning is raised.

For example:

CLI:
regfusion -s mni_input.nii.gz -o output -i nearest -t label.gii

Python:
from regfusion import vol_to_fsaverage
lh, rh = vol_to_fsaverage('mni_input.nii.gz', 'output', interp='nearest', out_type='label.gii')

The output, which will have the appropriate GIfTI file extensions:

output/
  lh.mni_input.allSub_RF_ANTs_MNI152_orig_to_fsaverage.label.gii
  rh.mni_input.allSub_RF_ANTs_MNI152_orig_to_fsaverage.label.gii

4. MNI to fsaverage with RF-M3Z

And finally, the RF-M3Z method can be used if that is preferred:

CLI:
regfusion -i mni_input.nii.gz -o output -p MNI152_norm -r RF_M3Z

Python:
from regfusion import vol_to_fsaverage
lh, rh = vol_to_fsaverage('mni_input.nii.gz', 'output', template_type='MNI152_norm', rf_type='RF_M3Z')

The output, with different file names reflecting the method/template used:

output/
  lh.mni_input.allSub_RF_M3Z_MNI152_norm_to_fsaverage.nii.gz
  rh.mni_input.allSub_RF_M3Z_MNI152_norm_to_fsaverage.nii.gz

Notes

regfusion implements the same two registration fusion approaches by Wu et al, and is validated against the original MATLAB version (see tests/). However, there are some differences in the API:

  • regfusion does not have the -n flag that determines the number of subjects used to create the average mapping. That is because the standalone scripts of the MATLAB versions only uses all 1490 subjects, and thus regfusion does too
  • regfusion does not have the -m flag because no MATLAB is required
  • regfusion does not have the -f flag because, technically, Freesurfer is not required. However, it is strongly recommended that you have a freely available Freesurfer license because we are ultimately projecting to Freesurfer's fsaverage
  • Unlike the original MATLAB version, regfusion has a -t flag (out_type in vol_to_fsaverage; see above for description). The original MATLAB version outputs NIfTI images (regfusion default), but this option lets regfusion output to GIfTIs, which are generally preferred for surface files. Users are encouraged to set -t/out_type to one of the GIfTI output types if they find that GIfTIs are more suitable for their needs

Some useful things to know:

  • Wu et al show that RF-ANTs is generally the better approaches of the two, which is why it's the default in regfusion. RF-M3Z seems best-suited if the normalization was performed via Freesurfer.
  • As Wu et al emphasize, the actual best practice here avoid projecting standard volumetric coordinates (e.g., MNI) to fsaverage altogether. Alternatives include performing all you analyses in subject/native volumetric coordinates and projecting that data to fsaverage, based on Freesurfer's recon-all. Or, perform analyses directly in fsaverage after running recon-all. Projecting data from one standard coordinates space to another is loses precision at each step (see Wu et al for details). Neverthless, people do this all the time and these registration fusion approaches ensure that these projections are as accurate as possible.
  • Relating to the previous point: If you do project from MNI/Colin coordinates to fsaverage, it's probably a wise idea to find a way to still show your data in volume-space too (e.g., as supplementary figures/material).

References

Wu J, Ngo GH, Greve DN, Li J, He T, Fischl B, Eickhoff SB, Yeo BTT. Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems, Human Brain Mapping 39:3793–3808, 2018.

Owner
Dan Gale
Neuroscience PhD candidate with an interest in data science and software development.
Dan Gale
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022