An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Overview

title

Pi Zero Bikecomputer

An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+

https://github.com/hishizuka/pizero_bikecomputer

News

  • 2021/4/18 Please reinstall pyqtgraph when using python3-pyqt5 in Raspberry Pi OS (skip check if using).
  • 2021/4/3 Please reinstall openant and pyqtgraph because both libraries are re-forked.
$ sudo pip3 uninstall pyqtgraph
$ sudo pip3 install git+https://github.com/hishizuka/pyqtgraph.git
$ sudo pip3 uninstall openant
$ sudo pip3 install git+https://github.com/hishizuka/openant.git

Table of Contents

Abstract

Pi Zero Bikecomputer is a GPS and ANT+ bike computer based on Raspberry Pi Zero(W, WH). This is the first DIY project in the world integrated with necesarry hardwares and softwares for modern bike computer. It measures and records position(GPS), ANT+ sensor(speed/cadence/power) and I2C sensor(pressure/temperature/accelerometer, etc). It also displays these values, even maps and courses in real-time. In addition, it write out log into .fit format file.

In this project, Pi Zero Bikecomputer got basic functions needed for bike computers. Next target is to add new functions which existing products do not have!

You will enjoy both cycling and the maker movement with Pi Zero Bikecomputer!

Here is detail articles in Japanese.

Daily update at twitter (@pi0bikecomputer), and my cycling activity at STRAVA.

system-01-202106

system-02

Features

  • Easy to make

    • Use modules available at famous Maker stores.
    • Assemble in Raspberry Pi ecosystems.
    • Install with basic commands such as apt-get install, pip and git command.
  • Customization

    • Need only modules you want to use. Pi Zero Bikecomputer detects your modules.
  • Easy to develop

    • Pi Zero Bikecomputer uses same libraries as for standard Linux.
    • So, you can run in cross platform environments such as Raspberry Pi OS, some Linux, macOS and Windows.
  • Good balance between battery life and performance

Specs

Some functions depend on your parts.

General

Specs Detail Note
Logging Yes See as below
Sensors Yes See as below
Positioning Yes A GPS module is required. See as below.
GUI Yes See as below
Wifi Yes Built-in wifi
Battery life(Reference) 18h with 3100mAh mobile battery(Garmin Charge Power Pack) and MIP Reflective color LCD.

Logging

Specs Detail Note
Stopwatch Yes Timer, Lap, Lap timer
Lap Yes [Total, Lap ave, Pre lap ave] x [HR, Speed, Cadence, Power]
Cumulative value Yes [Total, Lap, Pre lap] x [Distance, Works, Ascent, Descent]
Elapsed time Yes Elapsed time, average speed(=distance/elapsed time), gained time from average speed 15km/h(for brevet)
Auto stop Yes Automatic stop at speeds below 4km/h(configurable), or in the state of the acceleration sensor when calculating the speed by GPS alone
Recording insterval 1s Smart recording is not supported.
Resume Yes
Output .fit log file Yes
Upload to STRAVA Yes
Live sending Yes But I can't find a good dashboard service like as Garmin LiveTrack

Sensors

USB dongle is required if using ANT+ sensors.

Specs Detail Note
ANT+ heartrate sensor Yes
ANT+ speed sensor Yes
ANT+ cadence sensor Yes
ANT+ speed&cadence sensor Yes
ANT+ powermeter Yes Calibration is not supported.
ANT+ LIGHT Yes Bontrager Flare RT only.
ANT+ Control Yes Garmin Edge Remote only.
Bluetooth sensors No
Barometric altimeter Yes An I2c sensor(pressure, temperature) is required.
Accelerometer Yes An I2c sensor is required.
Magnetometer Yes An I2c sensor is required.
Light sensor Yes An I2c sensor is required. For auto backlight and lighting.

Positioning

Specs Detail Note
Map Yes Support map tile format like OSM. So, offline map is available with local caches.
Course on the map Yes A course file(.tcx) is required.
Course profile Yes A course file(.tcx) is required.
Cuesheet Yes Use course points included in course files.
Search Route Yes Google Directions API
  • Map with Toner Map
    • Very useful with 2 colors displays (black and white).
  • Map with custimized Mapbox
    • Use 8 colors suitable for MIP Reflective color LCD.
  • Course profile

GUI

Specs Detail Note
Basic page(values only) Yes
Graph Yes Altitude and performance(HR, PWR)
Customize data pages Yes With layout.yaml
ANT+ pairing Yes
Adjust wheel size Yes Set once, store values
Adjust altitude Yes Auto adjustments can be made only once, if on the course.
Language localization Yes Font and translation file of items are required.
No GUI option Yes headless mode
  • Performance graph
  • Language localization(Japanese)

Experimental functions

ANT+ multiscan

it displays three of the people around you in the order in which you caught sensors using ANT+ continuous scanning mode.

Comparison with other bike computers

  • 200km ride with Garmin Edge 830 and Pizero Bikecomputer (strava activity)

  • title-03.png

Items Edge830 Pi Zero Bikecomputer
Distance 193.8 km 194.3 km
Work 3,896 kJ 3,929 kJ
Moving time 9:12 9:04
Total Ascent 2,496 m 2,569 m

Hardware Installation

See hardware_installation.md.

Software Installation

See software_installation.md.

Q&A

License

This repository is available under the GNU General Public License v3.0

Author

hishizuka (@pi0bikecomputer at twitter, pizero bikecomputer at STRAVA)

Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022