DUE: End-to-End Document Understanding Benchmark

Overview

This is the repository that provide tools to download data, reproduce the baseline results and evaluation.

What can you achieve with this guide

Based on this repository, you may be able to:

  1. download data for benchmark in a unified format.
  2. run all the baselines.
  3. evaluate already trained baseline models.

Install benchmark-related repositories

Start the container:

sudo userdocker run nvcr.io/nvidia/pytorch:20.12-py3

Clone the repo with:

git clone [email protected]:due-benchmark/baselines.git

Install the requirements:

pip install -e .

1. Download datasets and the base model

The datasets are re-hosted on the https://duebenchmark.com/data and can be downloaded from there. Moreover, since the baselines are finetuned based on the T5 model, you need to download the original model. Again it is re-hosted at https://duebenchmark.com/data. Please place it into the due_benchmark_data directory after downloading.

TODO: dopisać resztę

2. Run baseline trainings

2.1 Process datasets into memmaps (binarization)

In order to process datasets into memmaps, set the directory downloaded_data_path to downloaded data, set memmap_directory to a new directory that will store binarized datas, and use the following script:

./create_memmaps.sh

2.2 Run training script

Single training can be started with the following command, assuming out_dir is set as an output for the trained model's checkpoints and generated outputs. Additionally, set datas to any of the previously generated datasets (e.g., to DeepForm).

python benchmarker/cli/l5/train.py \
    --model_name_or_path ${downloaded_data_path}/t5-base \
    --relative_bias_args="[{\"type\":\"1d\"}]" \
    --dropout_rate 0.15 \
    --model_type=t5 \
    --output_dir ${out_dir} \
    --data_dir ${memmap_directory}/${datas}_memmap/train \
    --val_data_dir ${memmap_directory}/${datas}_memmap/dev \
    --test_data_dir ${memmap_directory}/${datas}_memmap/test \
    --gpus 1 \
    --max_epochs 30 \
    --train_batch_size 1 \
    --eval_batch_size 2 \
    --overwrite_output_dir \
    --accumulate_grad_batches 64 \
    --max_source_length 1024 \
    --max_target_length 256 \
    --eval_max_gen_length 16 \
    --learning_rate 2e-4 \
    --lr_scheduler constant \
    --warmup_steps 100 \
    --trim_batches \ 
    --do_train \
    --do_predict \ 
    --additional_data_fields doc_id label_name \
    --early_stopping_patience 20 \
    --segment_levels tokens pages \
    --optimizer adamw \
    --weight_decay 1e-5 \
    --adam_epsilon 1e-8 \
    --num_workers 4 \
    --val_check_interval 1

The models presented in the paper differs only in two places. The first is the choice of --relative_bias_args. T5 uses [{'type': '1d'}] whereas both +2D and +DALL-E use [{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]

Moreover +DALL-E had --context_embeddings set to [{'dimension': 1024, 'use_position_bias': False, 'embedding_type': 'discrete_vae', 'pretrained_path': '', 'image_width': 256, 'image_height': 256}]

3. Evaluate

3.1 Convert output to the submission file

In order to compare two files (generated by the model with the provided library and the gold-truth answers), one has to convert the generated output into a format that can be directly compared with documents.jsonl. Please use:

python to_submission_file.py ${downloaded_data_path} ${out_dir}

3.2 Evaluate reproduced models

Finally outputs can be evaluated using the provided evaluator. First, get back into main directory, where this README.md is placed and install it by cd due_evaluator-master && pip install -r requirement And run:

python due_evaluator --out-files baselines/test_generations.jsonl --reference ${downloaded_data_path}/DeepForm

3.3 Evaluate baseline outputs

We provide an examples of outputs generated by our baseline (DeepForm). They should be processed with:

python benchmarker-code/to_submission_file.py ${downloaded_data_path}/model_outputs_example ${downloaded_data_path}
python due_evaluator --out-files ./benchmarker/cli/l5/baselines/test_generations.txt.jsonl --reference ${downloaded_data_path}/DeepForm/test/document.jsonl

The expected output should be:

       Label       F1  Precision   Recall
  advertiser 0.512909   0.513793 0.512027
contract_num 0.778761   0.780142 0.777385
 flight_from 0.794376   0.795775 0.792982
   flight_to 0.804921   0.806338 0.803509
gross_amount 0.355476   0.356115 0.354839
         ALL 0.649771   0.650917 0.648630
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022