Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

Overview

README

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques. A dataset containing signals collected from 60 LoRa devices is also provided. The detailed collection settings for the different sub-datasets can be found in Section Dataset Introduction. The section of Code Example introduces the usage of some important functions, for more detailed usage please read the code comments carefully.

Citation

If the part of the dataset/codes contributes to your project, please cite:

[1] G. Shen, J. Zhang, A. Marshall, and J. Cavallaro.   “Towards Scalable and Channel-Robust Radio Frequency 
Fingerprint Identification for LoRa,” IEEE Trans. Inf. Forensics Security, 2022.
@article{shen2021towards,
  title={Towards Scalable and Channel-Robust Radio Frequency Fingerprint Identification for LoRa},
  author={Shen, Guanxiong and Zhang, Junqing and Marshall, Alan and Cavallaro, Joseph},
  journal={arXiv preprint arXiv:2107.02867},
  year={2021}
}

Dataset Introduction

Experimental Devices

There are 60 commercial-off-the-shelf LoRa devices (LoPy4, mbed SX1261 shields, FiPy, Dragino SX1276 shields) included in the experiments. The table below provides more details of them.

Device index Model Chipset
1 - 45 Pycom LoPy4 SX1276
46 - 50 mbed SX1261 shield SX1261
51 - 55 Pycom FiPy SX1272
56 - 60 Dragino SX1276 shield SX1276

All the LoRa packets are captured by a USRP N210 software-defined radio (SDR).

Dataset Structure

The dataset consists of 26 sub-datasets, each of which is an HDF5 file. Each HDF5 file contains a number of LoRa signals (IQ samples of preamble part) and corresponding device labels. As HDF5 does not support complex numbers, we concatenate the signal I-brach (real part) and Q-branch (imaginary part) and then save it. Figure below shows the structure of the raw HDF5 dataset.

Training Datasets

The following table summarizes the basic information of each training dataset. All the training datasets were collected in a residential room with a line of sight (LOS) between the transmitter and receiver.

Training dataset path Devices Number of packets per device Augmentation
Dataset/Train/dataset_training_aug.h5 1 - 30 1,000 Yes, both multipath & Doppler
Dataset/Train/dataset_training_aug_0hz.h5 1 - 30 1,000 Yes, only multipath ($f_d$ = 0 Hz)
Dataset/Train/dataset_training_no_aug.h5 1 - 30 500 No

Test/Enrollment Datasets

The test/enrollment datasets were collected in a residential room, an office building and a meeting room. The floor plan is provided in the following figure:

The following table summarizes the basic information of each test/enrollment dataset.

Test dataset path Devices Number of packets per device Collection env.
Dataset/Test/dataset_seen_devices.h5 1 - 30 400 Residential room, LOS, stationary
Dataset/Test/dataset_rogue.h5 41 - 45 200 Residential room, LOS, stationary
Dataset/Test/dataset_residential.h5 31 - 40 400 Residential room, LOS, stationary
Dataset/Test/dataset_other_device_type.h5 46 - 60 400 Residential room, LOS, stationary
Dataset/Test/channel_problem/A.h5 31 - 40 200 Location A, LOS, stationary
Dataset/Test/channel_problem/B.h5 31 - 40 200 Location B, LOS, stationary
Dataset/Test/channel_problem/C.h5 31 - 40 200 Location C, LOS, stationary
Dataset/Test/channel_problem/D.h5 31 - 40 200 Location D, NLOS, stationary
Dataset/Test/channel_problem/E.h5 31 - 40 200 Location E, NLOS, stationary
Dataset/Test/channel_problem/F.h5 31 - 40 200 Location F, NLOS, stationary
Dataset/Test/channel_problem/B_walk.h5 31 - 40 200 Location B, LOS, object moving
Dataset/Test/channel_problem/F_walk.h5 31 - 40 200 Location F, NLOS, object moving
Dataset/Test/channel_problem/moving_office.h5 31 - 40 200 LOS, mobile in the office
Dataset/Test/channel_problem/moving_meeting_room.h5 31 - 40 200 NLOS, mobile in the meeting room
Dataset/Test/channel_problem/B_antenna.h5 31 - 40 200 Location B, LOS, stationary, parallel antenna
Dataset/Test/channel_problem/F_antenna.h5 31 - 40 200 Location F, NLOS, stationary, parallel antenna

Code Example

1. Before Start

a) Install Required Packages

Please find the 'requirement.txt' file to install the required packages.

b) Download Dataset

Please downlaod the dataset and put it in the project folder. The download link is https://ieee-dataport.org/open-access/lorarffidataset.

c) Operating System

This project is built entirely on the Windows operating system. There may be unexpected issues on other operating systems.

2. Quick Start

After installing packages of correct versions and downloading the datasets, you can directly run the 'main.py' file for RFF extractor training/rogue device detection/classification tasks. You can change the variable 'run_for' in line 364 to specify which task to perform. For example, the program will train an RFF extractor and save it if you set the 'run_for' as 'Train'.

3. Load Datasets

It is recommended to use our provided 'LoadDataset' class function to load the raw HDF5 files. You need to specify the dataset path, device range, and packet range before running it. Below is an example of loading an HDF5 file:

import numpy as np
from dataset_preparation import LoadDataset

LoadDatasetObj = LoadDataset()
data, label = LoadDatasetObj.load_iq_samples(file_path = './dataset/Train/dataset_training_aug.h5', 
                                             dev_range = np.arange(30,40, dtype = int), 
                                             pkt_range= np.arange(0,100, dtype = int))

This example will extract ($10\times100=1000$) LoRa signals in total. More specifically, it will extract 100 packets from each device in range. The function 'load_iq_samples' returns two arrays, data and label. The data is a complex128 array of size (1000,8192), and label is an int32 array of size (1000,1). The figure below illustrates the structures of the two arrays.

Note that the loaded labels start from 0 but not 1 to adapt to deep learning. In other words, device 1 is labelled 0 and device 2 is labelled 1 and so forth.

4. Generate Channel Independent Spectrograms

The channel independent spectrogram helps mitigate the channel effects in the received signal and make LoRa-RFFI systems more robust to channel variations. We provide functions to convert an array of IQ samples to channel independent spectrograms. The following code block gives an example:

from dataset_preparation import ChannelIndSpectrogram

ChannelIndSpectrogramObj = ChannelIndSpectrogram()
# The input 'data' is the loaded IQ samples in the last example.
ch_ind_spec = ChannelIndSpectrogramObj.channel_ind_spectrogram(data)

The returned 'ch_ind_spec' is an array of size (1000,102,62,1). Note that the size of the array is affected by the STFT parameters, which can be changed in code. Please refer to our paper or code comments to find the detailed derivation of channel independent spectrograms.

5. Train an RFF Extractor

The function 'train_feature_extractor()' can train an RFF extractor using triplet loss.

import numpy as np
from deep_learning_models import TripletNet, identity_loss
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.optimizers import RMSprop

feature_extractor = train_feature_extractor()

You can also specify the training dataset path, training device range, training packets range and SNR range during augmentation. Otherwise, the default values will be used. Following is an example:

feature_extractor = train_feature_extractor(file_path = './dataset/Train/dataset_training_aug.h5', 
                                            dev_range = np.arange(0,10, dtype = int), 
                                            pkt_range = np.arange(0,1000, dtype = int), 
                                            snr_range = np.arange(20,80)):

6. Rogue Device Detection

The function 'test_rogue_device_detection()' performs the rogue device detection task. You MUST specify the RFF extractor path before running the function. See the example below:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc

fpr, tpr, roc_auc, eer = test_rogue_device_detection('./models/Extractor_1.h5')

This function returns false posive rate (FPR), true positive rate (TPR), area under the curve (AUC) and equal error rate (EER). These are all important evaluation metrics in rogue device detection task. Please refer to our paper for their definitions.

The following lines of code plot the ROC curve using the returned results:

import matplotlib.pyplot as plt

# Plot the ROC curves.
plt.figure(figsize=(4.8, 2.8))
plt.xlim(-0.01, 1.02)
plt.ylim(-0.01, 1.02)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Extractor 1, AUC = ' 
         + str(round(roc_auc,3)) + ', EER = ' + str(round(eer,3)), C='r')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc=4)
# plt.savefig('roc_curve.pdf',bbox_inches='tight')
plt.show()    

7. Classification

The function 'test_classification()' performs the classification task. You MUST specify the paths of enrollment dataset, test dataset and RFF extractor before running the function. Here is a simple example:

from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

pred_label, true_label, acc = test_classification(file_path_enrol = 
                                                  './dataset/Test/dataset_residential.h5',
                                                  file_path_clf = 
                                                  './dataset/Test/channel_problem/A.h5',
                                                  feature_extractor_name = 
                                                  './models/Extractor_1.h5')

This example returns predicted labels, true labels and the overall classification accuracy. We can further plot a confusion matrix to see fine-grained classification results:

import matplotlib.pyplot as plt
import seaborn as sns

# Plot the confusion matrix.
conf_mat = confusion_matrix(true_label, pred_label)
classes = test_dev_range + 1 # xticklabels

plt.figure()
sns.heatmap(conf_mat, annot=True, 
            fmt = 'd', cmap='Blues',
            cbar = False,
            xticklabels=classes, 
            yticklabels=classes)
plt.xlabel('Predicted label', fontsize = 20)
plt.ylabel('True label', fontsize = 20)

License

The dataset and code is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Contact

Please contact the following email addresses if you have any questions:
[email protected]
[email protected]

OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023